A compliant multistable mechanism is capable of steadily staying at multiple distinct positions without power input. Many applications including switches, valves, relays, positioners, and reconfigurable robots may benefit from multistability. In this paper, two new approaches for synthesizing compliant multistable mechanisms are proposed, which enable designers to achieve multistability through the use of a single bistable mechanism. The synthesis approaches are described and illustrated by several design examples. Compound use of both approaches is also discussed. The design potential of the synthesis approaches is demonstrated by the successful operation of several instantiations of designs that exhibit three, four, five, and nine stable equilibrium positions, respectively. The equations for determining the actuation force required to move a multistable mechanism are provided. The synthesis approaches enable us to design a compliant mechanism with a desired number of stable positions.

References

1.
Howell
,
L. L.
,
Compliant Mechanisms
(
Wiley
,
New York
, 2001).
2.
Hafez
,
M.
,
Lichter
,
M. D.
, and
Dubowsky
,
S.
, 2003, “
Optimized Binary Modular Reconfigurable Robotic Devices
,”
IEEE/ASME Trans. Mech.
,
8
(
1
), pp.
304
326
.
3.
Oberhammer
,
J.
,
Tang
,
M.
,
Liu
,
A. Q.
, and
Stemme
,
G.
, 2006, “
Mechanically Tri-Stable, True Single-Pole-Double-Throw (SPDT) Switches
,”
J. Micromech. Microeng.
,
16
, pp.
2251
2258
.
4.
Foulds
,
I. G.
,
Trinh
,
M. T.
,
Hu
,
S.
,
Liao
,
S. W.
,
Johnstone
,
R. W.
, and
Parameswaran
,
M. A.
, 2003, “
New Design for Surface Micromachined Bistable and Multistable Switches
,”
J. Microlithogr., Microfabr., Microsyst.
,
2
(
4
), pp.
255
258
.
5.
Ohsaki
,
M.
, and
Nishiwaki
,
S.
, 2005, “
Shape Design of Pin-Jointed Multistable Compliant Mechanisms Using Snapthrough Behavior
,”
Struct. Multidisc. Optim.
,
30
, pp.
327
334
.
6.
Hoffmann
,
M.
,
Kopka
,
P.
, and
Voges
,
E.
, 1999, “
Bistable Micromechanical Fiber-Optic Switches on Silicon with Thermal Actuators
,”
Sens. Actuators, A
,
78
(
1
), pp.
28
35
.
7.
Pucheta
,
M. A.
, and
Cardona
,
A.
, 2010, “
Design of Bistable Compliant Mechanisms Using Precision-Position and Rigid-Body Replacement Methods
,”
Mech. Mach. Theory
,
45
(
2
), pp.
304
326
.
8.
Hälg
,
B.
, 1990, “
On a Micro-Electro-Mechanical Nonvolatile Memory Cell
,”
IEEE Trans. Electron Devices
,
37
, pp.
2230
2236
.
9.
Jensen
,
B. D.
,
Parkinson
,
M. B.
,
Kurabayashi
K.
,
Howell
L. L.
, and
Baker
M. S.
, 2001, “
Design Optimization of a Fully-Compliant Bistable Micro-Mechanism
,”
Proceedings of ASME IMECE
,
New York, USA
, Nov. 11–16, Vol.
2
, pp.
2931
2937
.
10.
Charlot
,
B.
,
Sun
,
W.
,
Yamashita
,
K.
,
Fujita
,
H.
, and
Toshiyoshi
,
H.
, 2008, “
Bistable Nanowire for Micromechanical Memory
,”
J. Micromech. Microeng.
,
18
(
4
), p.
045005
.
11.
Hwang
,
I.
,
Shim
,
Y.
, and
Lee
,
J.
, 2003, “
Modeling and Experimental Characterization of the Chevron-Type Bi-Stable Microactuator
,”
J. Micromech. Microeng.
,
13
(
6
), pp.
948
954
.
12.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
, 2004, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
, pp.
137
146
.
13.
Masters
,
N. D.
, and
Howell
,
L. L.
, 2003, “
A Self-Retracting Fully Compliant Bistable Micromechanism
,”
J. Microelectromech. Syst.
,
12
, pp.
273
280
.
14.
Wilcox
,
D. L.
, and
Howell
,
L. L.
, 2005, “
Fully Compliant Tensural Bistable Micromechanisms (FTBM)
,”
J. Microelectromech. Syst.
,
14
(
6
), pp.
1223
1235
.
15.
Sönmez
,
Ü.
, and
Tutum
,
C. C.
, 2008, “
A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model
,”
Trans. ASME, J. Mech. Des.
,
130
(
4
), p.
042304
.
16.
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Salmon
L. G.
, 1999, “
Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms
,”
Trans. ASME, J. Mech. Des.
,
121
(
3
), pp.
416
423
.
17.
Jensen
,
B. D.
, and
Howell
,
L. L.
, 2003, “
Identification Of Compliant Pseudo-Rigid-Body Mechanism Configurations Resulting in Bistable Behavior
,”
Trans. ASME, J. Mech. Des.
,
125
, pp.
701
708
.
18.
Jensen
,
B. D.
, and
Howell
,
L. L.
, 2004, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints
,”
Trans. ASME, J. Mech. Des.
,
126
, pp.
657
666
.
19.
Su
,
H.
, and
McCarthy
,
J. M.
, 2007, “
Synthesis of Bistable Compliant Four-Bar Mechanisms Using Polynomial Homotopy
,”
Trans. ASME, J. Mech. Des.
,
129
, pp.
1094
1098
.
20.
Pendleton
,
T. M.
, and
Jensen
,
B. D.
, “
Development of a Tristable Compliant Mechanism
,”
Proceedings of 12th IFToMM World Congress, Besançon, France, June 18–21
,
A835
, 2007.
21.
Chen
,
G.
,
Wilcox
,
D. L.
, and
Howell
,
L. L.
, 2009, “
Fully Compliant Double Tensural Tristable Micromechanisms (DTTM)
,”
J. Micromech. Microeng.
,
19
, p.
025011
.
22.
Chen
,
G.
,
Aten
,
Q. T.
,
Zirbel
,
S.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
, 2009, “
A Tristable Mechanism Configuration Employing Orthogonal Compliant Mechanisms
,”
Trans. ASME, J. Mech. Robot.
,
2
(
1
), p.
014501
.
23.
Han
,
J. S.
,
Muller
,
C.
,
Wallrabe
,
U.
, and
Korvink
,
J. G.
, 2007, “
Design, Simulation, and Fabrication of a Quadstable Monolithic Mechanism With X- and Y-Directional Bistable Curved Beams
,”
Trans. ASME, J. Mech. Des.
,
129
, pp.
1198
1203
.
24.
Halverson
,
P. A.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
, 2010, “
Tension-Based Multi-Stable Compliant Rolling-Contact Elements
,”
Mech. Mach. Theory
,
45
(
2
), pp.
147
156
.
25.
Oh
,
Y. S.
, and
Kota
,
S.
, 2009, “
Synthesis of Multistable Equilibrium Compliant Mechanisms Using Combinations Of Bistable Mechanisms
,”
Trans. ASME, J. Mech. Des.
,
131
, p.
021002
.
26.
Wilcox
,
D. L.
, and
Howell
,
L. L.
, 2005, “
Double-Tensural Bistable Mechanisms (DTBM) with On-Chip Actuation and Spring-Like Post-Bistable Behavior
,”
Proceedings of ASME Mechanisms and Robotics Conference, Long Beach, CA, September 24–28
, DETC2005-84697.
You do not currently have access to this content.