Drawing inspiration from examples by analogy can be a powerful tool for innovative design during conceptual ideation but also carries the risk of negative design outcomes (e.g., design fixation), depending on key properties of examples. Understanding these properties is critical for effectively harnessing the power of analogy. The current research explores how variations in analogical distance, commonness, and representation modality influence the effects of examples on conceptual ideation. Senior-level engineering students generated solution concepts for an engineering design problem with or without provided examples drawn from the U.S. Patent database. Examples were crossed by analogical distance (near-field vs. far-field), commonness (more vs. less-common), and modality (picture vs. text). A control group that received no examples was included for comparison. Effects were examined on a mixture of ideation process and product variables. Our results show positive effects of far-field and less-common examples on novelty and variability in quality of solution concepts. These effects are not modulated by modality. However, detailed analyses of process variables suggest divergent inspiration pathways for far-field vs. less-common examples. Additionally, the combination of far-field, less-common examples resulted in more novel concepts than in the control group. These findings suggest guidelines for the effective design and implementation of design-by-analogy methods, particularly a focus on far-field, less-common examples during the ideation process.

References

References
1.
Pisano
,
G.
, and
Shih
,
W.
, 2009, “
Restoring American Competitiveness
,”
Harv. Bus. Rev.
,
87
, pp.
114
125
.
2.
National Academy of Engineering
, 2005,
Engineering Research and America’s, Future: Meeting the Challenges of a Global Economy
,
National Academies Press
,
Washington, DC
.
3.
Vogel
,
C. M.
,
Cagan
,
J.
, and
Boatwright
,
P.
, 2005,
The Design of Things to Come
,
Wharton School Pub
,
Upper Saddle River, NJ
.
4.
Terwiesch
,
C.
, and
Ulrich
,
K. T.
, 2009,
Innovation Tournaments
,
Harvard Business School Pub
.
5.
Casakin
,
H.
, and
Goldschmidt
,
G.
, 1999, “
Expertise and the use of visual analogy: Implications for design education
,”
Des. Stud.
,
20
(
2
), pp.
153
175
.
6.
Goel
,
A.
, 1997, “
Design, Analogy and Creativity
,”
IEEE Expert
,
12
(
3
), pp.
62
70
.
7.
Christensen
,
B. T.
, and
Schunn
,
C. D.
, 2007, “
The Relationship of Analogical Distance to Analogical Function and Pre-Inventive Structure: The Case of Engineering Design.
Mem. Cognit.
,
35
(
1
), pp.
29
38
.
8.
Linsey
,
J.
,
Murphy
,
J.
,
Laux
,
J.
,
Markman
,
A.
, and
Wood
,
K. L.
, 2009, “
Supporting Innovation by Promoting Analogical Reasoning
,”
Tools of Innovation
,
Oxford University Press
,
New York, NY
.
9.
Gentner
,
D.
, 1983, “
Structure-Mapping: A Theoretical Framework for Analogy
,”
Cogn. Sci.
,
7
, pp.
155
170
.
10.
Linsey
,
J.
,
Murphy
,
J.
,
Markman
,
A.
,
Wood
,
K. L.
, and
Kortoglu
,
T.
, 2006, “
Representing Analogies: Increasing the Probability of Innovation
,”
ASME International Design Theory and Method Conference
,
Philadelphia, PA
.
11.
Linsey
,
J.
,
Wood
,
K. L.
, and
Markman
,
A.
, 2008, “
Modality and Representation in Analogy
,”
Artif. Intell. Eng. Des. Anal. Manuf. (Special Issue on Multi-modal Design)
,
22
(
2
), pp.
85
100
.
12.
Gordon
,
W. J. J.
, 1961,
Synectics: The Development of Creative Capacity
,
Harper and Brothers
,
New York
.
13.
French
,
M.
, 1988,
Invention and Evolution: Design in Nature and Engineering
,
Cambridge University Press
,
Cambridge, UK
.
14.
Hacco
,
E.
, and
Shu
,
L. H.
, 2002, “
Biomimetic Concept Generation Applied to Design for Remanufacture
,”
2002 ASME Design Engineering Technology Conference and Company and Information in Engineering Conference
,
Montreal, Quebec, Canada
.
15.
McAdams
,
D. A.
, and
Wood
,
K. L.
, 2000, “
Quantitative Measures for Design by Analogy
,” ,
DETC’ 00, 2000 ASME Design Engineering Technology Conference
Baltimore, Maryland.
16.
Hirtz
,
J.
,
Stone
,
R. B.
, and
McAdams
,
D. A.
, 2002, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
, pp.
65
82
.
17.
Gentner
,
D.
, and
Markman
,
A. B.
, 1997, “
Structure Mapping in Analogy and Similarity
,”
Am. Psychol.
,
52
, pp.
45
56
.
18.
Dahl
,
D. W.
, and
Moreau
,
P.
, 2002, “
The Influence and Value of Analogical Tthinking During New Product Ideation
,”
J. Mark. Res.
,
39
(
1
), pp.
47
60
.
19.
Wilson
,
J. O.
,
Rosen
,
D.
,
Nelson
,
B. A.
, and
Yen
,
J.
, 2010, “
The Effects of Biological Examples in Idea Generation
,”
Des. Stud.
,
31
, pp.
169
186
.
20.
Gick
,
M. L.
, and
Holyoak
,
K. J.
, 1980, “
Analogical Problem Solving
,”
Cogn. Psychol.
,
12
(
3
), pp.
306
355
.
21.
Dunbar
,
K.
, 1997, “
How Scientists Think: On-Line Creativity and Conceptual Change in Science
,”
Creative thought: An investigation of conceptual structures and processes
,
T. B.
Ward
,
S. M.
Smith
, and
J.
Vaid
, ed.,
Amer. Psych. Assoc.
,
Washington, DC
, pp.
461
493
.
22.
Weisberg
,
R. W.
, 2009, “
On “Out-of-the-Box,” Thinking in Creativity
,”
Tools for Innovation
A. B.
Markman
and
K. L.
Wood
, eds.,
Oxford University Press
,
New York
.
23.
Purcell
,
A. T.
, and
Gero
,
J. S.
1992, “
Effects of Examples on the Results of a Design Activity
,”
Knowledge-Based Syst.
,
5
(
1
), pp.
82
91
.
24.
Duncker
,
K.
, 1945,
On Problem Solving
,
Amer. Psych. Assoc.
Washington, DC
.
25.
Adamson
,
R. E.
, 1952, “
Functional Fixedness as Related to Problem Solving: A Repetition of Three Experiments
,”
J. Exp. Psychol.
,
44
(
4
), pp.
288
291
.
26.
Maier
,
N. R. F.
, 1931, “
Reasoning in Humans. II. The Solution of a Problem and Its Appearance in Consciousness
,”
J. Comp. Psychol.
,
12
, pp.
181
194
.
27.
Chase
,
W. G.
, and
Simon
,
H. A.
, 1973, “
The Mind’s Eye in Chess
,”
Visual Information Processing
,
W. G.
Chase
, ed.,
Academic Press
,
New York
.
28.
Chi
,
M. T. H.
,
Feltovich
,
P. J.
, and
Glaser
,
R.
, 1981, “
Categorization and Representation of Physics Problems by Experts and Novices
,”
Cogn. Sci.
,
5
, pp.
121
152
.
29.
Chi
,
M. T. H.
, and
Koeske
,
R. D.
, 1983, “
Network Representation of a Child’s Dinosaur Knowledge
,”
Dev. Psychol.
,
19
(
1
), pp.
29
39
.
30.
Newell
,
A.
, 1990,
Unified Theories of Cognition
,
Harvard University Press
,
Cambridge, MA
.
31.
Anderson
,
J. R.
, and
Schunn
,
C. D.
, 2000, “
Implications of the ACT-R Learning Theory: No Magic Bullets
,”
Advances in Instructional Psychology
,
R.
Glaser
, ed.,
Lawrence Erlbaum
,
Mahwah, NJ
.
32.
Kaplan
,
C. A.
, and
Simon
,
H. A.
, 1990, “
In Search of Insight
,”
Cogn. Psychol.
,
22
, pp.
374
419
.
33.
Ohlsson
,
S.
, 1992, “
Information-Processing Explanations of Insight and Related Phenomena
,”
Advances in the Psychology of Thinking
, Vol.
1
,
M. T.
Keane
and
K. J.
Gilhooly
, eds.,
Harvester Wheatsheaf
,
Hertfordshire, UK
.
34.
Knoblich
,
G.
,
Ohlsson
,
S.
,
Haider
,
H.
, and
Rhenius
,
D.
, 1999, “
Constraint Relaxation and Chunk Decomposition in Insight Problem Solving
,”
J. Exp. Psych. Learn. Mem. Cogn.
,
25
(
6
), pp.
1534
1555
.
35.
McKoy
,
F. L.
,
Vargas-Hernandez
,
N.
,
Summers
,
J. D.
, and
Shah
,
J. J.
, 2001, “
Influence of Design Representation on Effectiveness of Idea Generation
,”
DETC ‘01: ASME 2001 Des. Eng. Tech. Conf. and Comp. and Inf. In Eng. Conf.
,
Pittsburgh, PA
.
36.
Green
,
M.
,
Dutson
,
A.
,
Wood
,
K. L.
,
Stone
,
R.
, and
McAdams
,
D.
, 2002, “
Integrating Service-Oriented Design Projects in the Engineering Curriculum
,”
Proceedings of the 2002 American Society for Engineering Education Annual Conference and Exposition
.
37.
Green
,
M.
, and
Wood
,
K. L.
, 2004, “
Service-Learning Approaches to International Humanitarian Design Projects: Assessment of Spiritual Impact
,”
Proceedings of the 2004 Christian Engineering Education Conference
.
38.
White
,
C.
, and
Wood
,
K. L.
, 2010, “
Influences and Interests in Humanitarian Engineering
,” Proceedings of the ASEE Annual Conference, Lexington, KY, June 2010,
AC
2010-
652
; Proceedings of the Global Colloquium on Engineering Education, Singapore, October 2010.
39.
Moss
,
J.
,
Kotovsky
,
K.
, and
Cagan
,
J.
, 2007, “
The Influence of Open Goals on the Acquisition of Problem Relevant Information
,”
J. Exp. Psych. Learn. Mem. Cogn.
33
(
5
), pp.
876
891
.
40.
Tseng
,
I.
,
Moss
,
J.
,
Cagan
,
J.
, and
Kotovsky
,
K.
, 2008, “
The Role of Timing and Analogical Similarity in the Stimulation of Idea Generation in Design
,”
Des. Stud.
,
29
, pp.
203
221
.
41.
Markman
,
A. B.
, and
Wood
,
K. L.
, eds., 2009,
Tools for Innovation: The Science Behind Practical Methods That Drive New Ideas
,
Oxford University Press
,
New York
.
42.
Boden
,
M. A.
, 2004,
The Creative Mind: Myths and Mechanisms
,
2nd ed.
,
Routledge
,
London
.
43.
Shah
,
J. J.
,
Vargas-Hernandez
,
N.
, and
Smith
,
S. M.
, 2003, “
Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
24
, pp.
111
134
.
44.
Girotra
,
K.
,
Terwiesch
,
C.
, and
Ulrich
,
K. T.
, 2010, “
Idea Generation and the Quality of the Best Idea
,”
Manage. Sci.
,
56
(
4
), pp.
591
605
.
45.
Blanchette
,
I.
, and
Dunbar
,
K.
, 2000, “
How Analogies are Generated: The Roles of Structural and Superficial Similarity
,”
Mem. Cognit.
,
28
(
1
), pp.
108
124
.
46.
Ishibashi
,
K.
, and
Okada
,
T.
, 2006, “
Exploring the Effect of Copying Incomprehensible Exemplars on Creative Drawings
,”
R.
Sun
, ed.,
Proceedings 28th Ann. Conf. Cog. Sci. Society
.
Vancouver, Canada
.
47.
Novick
,
L. R.
, 1988, “
Analogical Transfer, Problem Similarity, and Expertise
,”
J. Exp. Psych. Learn. Mem. Cogn.
,
14
(
3
), pp.
510
520
.
48.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B. S.
, 2005, “
A Functional Representation for Biomimetic and Artificial Inspiration of New Ideas
,”
AIEDAM
,
19
, pp.
113
132
.
49.
Forbus
,
K. D.
,
Gentner
,
D.
, and
Law
,
K.
, 1994, “
MAC/FAC: A Model of Similarity-Based Retrieval
,”
Cogn. Sci.
,
19
, pp.
141
205
.
You do not currently have access to this content.