This paper proposes an approach to integrate top-down and bottom-up procedures for product concept and design selection. The top-down procedure identifies relationships between product requirements and design parameters and specifies an acceptable range of design parameters (called a design range) from product specifications and tolerances. Then, within the design range, the bottom-up procedure optimizes design specifications and tolerances in order to minimize a product cost. A product cost is defined as a sum of component costs, each of which is a function of design specifications and tolerances. A concept, with design specifications and tolerances, that minimizes product cost is an optimum concept. The proposed approach is demonstrated using an illustrative example. Sensitivity analysis with respect to the parameters of the product cost illustrates that the shape of design range defines how responsive a product is to uncertainty in cost function parameters relevant to design tolerances.

References

References
1.
INCOSE
, 2007,
INCOSE Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities
,
C.
Haskins
, ed.,
INCOSE
,
Seattle, WA
.
2.
Forsberg
,
K.
, and
Mooz
,
H.
, 1992, “
There Relationship of Systems Engineering to the Project Cycle
,”
Eng. Manage. J.
,
4
(
3
), pp.
36
43
.
3.
Speckhart
,
F. H.
, 1972, “
Calculation of Tolerance Based on a Minimum Cost Approach
,”
ASME J. Eng. Ind.
,
94
, pp.
447
453
.
4.
Spotts
,
J. F.
, 1973, “
Allocation of Tolerancing to Minimize Cost of Assembly
,”
ASME J. Eng. Ind.
,
95
, pp.
762
764
.
5.
Chase
,
K. W.
,
Greenwood
,
W. H.
,
Loosli
,
B. G.
, and
Hauglund
,
L. F.
, 1990, “
Least Cost Tolerance Allocation for Mechanical Assemblies With Automated Process Selection
,”
Manuf. Rev.
,
3
(
1
), pp.
49
59
.
6.
Chase
,
K. W.
, and
Greenwood
,
W. H.
, 1988, “
Design Issues in Mechanical Tolerance Analysis
,”
Manuf. Rev.
,
1
(
1
), pp.
50
59
.
7.
Vasseur
,
H.
,
Kurfess
,
T. R.
, and
Cagan
,
J.
, 1997, “
Use of a Quality Loss Function to Select Statistical Tolerances
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
410
416
.
8.
Choi
,
H.-G. R.
,
Park
,
M.-H.
, and
Salisbury
,
E.
, 2000, “
Optimal Tolerance Allocation With Loss Functions
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
529
535
.
9.
Li
,
Z.
,
Izquierdo
,
L. E.
,
Kokkolaras
,
M.
,
Hu
,
S. J.
, and
Papalambros
,
P. Y.
, 2008, “
Multiobjective Optimization for Integrated Tolerance Allocation and Fixture Layout Design in Multistation Assembly
,”
ASME J. Manuf. Sci. Eng.
,
130
(
4
), p.
044501
.
10.
Cheng
,
B.-W.
, and
Maghsoodloo
,
S.
, 1995, “
Optimization of Mechanical Assembly Tolerances by Incorporating Taguchi’s Quality Loss Function
,”
J. Manuf. Syst.
,
14
(
4
), pp.
264
276
.
11.
Feng
,
C.-X.
, and
Kusiak
,
A.
, 1997, “
Robust Tolerance Design With the Integer Programming Approach
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4A
), pp.
603
610
.
12.
Li
,
Z.
,
Kokkolaras
,
M.
,
Papalambros
,
P.
, and
Hu
,
S. J.
, 2008, “
Product and Process Tolerance Allocation in Multistation Compliant Assembly Using Analytical Target Cascading
,”
ASME J. Mech. Des.
,
130
(
9
), p.
091701
.
13.
Wu
,
Z.
,
Elmaraghy
,
W. H.
, and
Elmaraghy
,
H. A.
, 1988, “
Evaluation of Cost-Tolerance Algorithms for Design Tolerance Analysis and Synthesis
,”
Manuf. Rev.
,
1
, pp.
168
179
.
14.
Greenwood
,
W. H.
, and
Chase
,
K. W.
, 1988, “
Worst Case Tolerance Analysis With Nonlinear Problems
,”
ASME J. Eng. Ind.
,
110
(
3
), pp.
232
235
.
15.
Parkinson
,
D. B.
, 2000, “
The Application of a Robust Design Method to Tolerancing
,”
ASME J. Mech. Des.
,
122
(
2
), pp.
149
154
.
16.
Suh
,
N. P.
, 1990,
The Principles of Design
,
Oxford University Press
,
Oxford
.
17.
Frey
,
D. D.
,
Jahangir
,
E.
, and
Engelhardt
,
F.
, 2000, “
Computing the Information Content of Decoupled Designs
,”
Res. Eng. Des.
,
12
, pp.
90
102
.
18.
Bras
,
B.
, and
Mistree
,
F.
, 1995, “
A Compromise Decision Support Problem for Axiomatic and Robust Design
,”
ASME J. Mech. Des.
,
117
, pp.
10
19
.
19.
Takai
,
S.
, 2006, “
System Concept Selection by Minimizing Cost of Part Requirement Tolerances
,”
Proceedings of 2006 ASME International Mechanical Engineering Congress and Exposition
,
Chicago, IL
.
20.
Ravindran
,
A.
,
Ragsdell
,
K. M.
, and
Reklaitis
,
G. V.
, 2006,
Engineering Optimization: Methods and Applications
,
2nd ed.
,
John Wiley & Sons
,
Hoboken, NJ
.
21.
Schuldt
,
S. B.
,
Gabriele
,
G. A.
,
Root
,
R. R.
,
Sandgren
,
E.
, and
Ragsdell
,
K. M.
, 1977, “
Application of a New Penalty Function Method to Design Optimization
,”
ASME J. Eng. Ind.
,
99
(
1
), pp.
31
36
.
22.
Root
,
R. R.
, and
Ragsdell
,
K. M.
, 1980, “
On the Relationship Between a Continuous Update Method of Multipliers and the Generalized Reduced Gradient Method
,”
Int. J. Numer. Methods Eng.
,
15
(
11
), pp.
1735
1745
.
23.
Takai
,
S.
, and
Ishii
,
K.
, 2008,
A Decision-Analytic System Concept Selection for a Public Project
,
ASME J. Mech. Des.
,
130
(
11
), p.
111101
.
24.
Takai
,
S.
, 2010, “
A Use of a Mathematical Model in Updating Concept Selection
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101009
.
25.
Takai
,
S.
, and
Ishii
,
K.
, 2006, “
Integrating Target Costing Into Perception-Based Concept Evaluation of Complex and Large-Scale Systems Using Simultaneously Decomposed QFD
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1186
1195
.
You do not currently have access to this content.