In this paper, a technique to generate the wrench-closure workspace for general case completely restrained cable driven parallel mechanisms is proposed. Existing methods can be classified as either numerically or analytically based approaches. Numerical techniques exhaustively sample the task space, which can be inaccurate due to discretisation and is computationally expensive. In comparison, analytical formulations have higher accuracy, but often provides only qualitative workspace information. The proposed hybrid approach combines the high accuracy of the analytical approach and the algorithmic versatility of the numerical approach. Additionally, this is achieved with significantly lower computational costs compared to numerical methods. It is shown that the wrench-closure workspace can be reduced to a set of univariate polynomial inequalities with respect to a single variable of the end-effector motion. In this form, the workspace can then be efficiently determined and quantitatively evaluated. The proposed technique is described for a 3 degrees of freedom (3-DOF) and a 6-DOF cable driven parallel manipulator. A detailed example in workspace determination using the proposed approach and comparison against the conventional numerical approach is presented.

References

References
1.
Merlet
,
J.-P.
, 2000,
Parallel Robots
,
Kluwer
,
Dordrecht
.
2.
Albus
,
J. S.
,
Bostelman
,
R. V.
, and
Dagalakis
,
N.
, 1993, “
The NIST Robocrane
,”
J. Rob. Syst.
,
10
(
5
), pp.
709
724
.
3.
Kawamura
,
S.
,
Choe
,
W.
,
Tanaka
,
S.
, and
Pandian
,
S. R.
, 1995, “
Development of an Ultrahigh Speed Robot FALCON Using Wire Drive System
,”
Proceedings of IEEE International Conference on Robotics and Automation
, pp.
215
220
.
4.
Oh
,
S.-R.
,
Mankala
,
K.
,
Agrawal
,
S. K.
, and
Albus
,
J. S.
, 2005, “
A Dual-Stage Planar Cable Robot: Dynamic Modelling and Design of a Robust Controller With Positive Inputs
,”
J. Mech. Des.
,
127
, pp.
612
620
.
5.
Borgstrom
,
P. H.
,
Borgstrom
,
N. P.
,
Stealey
,
M. J.
,
Jordan
,
B.
,
Sukhatme
,
G. S.
,
Batalin
,
M. A.
, and
Kaiser
,
W. J.
, 2009, “
Design and Implementation of NIMS3D, a 3-D Cabled Robot for Actuated Sensing Applications
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
325
339
.
6.
Williams
,
R. L.
II
,
Albus
,
J. S.
, and
Bostelman
,
R. V.
, 2004, “
3D Cable-Based Cartesian Metrology System
,”
J. Rob. Syst.
,
21
(
5
), pp.
237
257
.
7.
Ferlay
,
F.
, and
Gosselin
,
F.
, 2008. “
A New Cable-Actuated Haptic Interface Design
,”
Proceedings of International Conference on Haptics: Perception, Devices and Scenarios
, pp.
474
483
.
8.
Bosscher
,
P.
,
Williams
,
R. L.
, II
,
Bryson
,
L. S.
, and
Castro-Lacouture
,
D.
, 2007, “
Cable-Suspended Robotic Contour Crafting System
,”
Autom. Constr.
,
17
, pp.
45
55
.
9.
Surdilovic
,
D.
, and
Bernhardt
,
R.
, 2004, “
STRING-MAN: A New Wire Robot For Gait Rehabilitation
,”
Proceedings of IEEE International Conference on Robotics and Automation
, pp.
2031
2036
.
10.
Mayhew
,
D.
,
Bachrach
,
B.
,
Rymer
,
W. Z.
, and
Beer
,
R. F.
, 2005, “
Development of the MACARM—a Novel Cable Robot for Upper Limb Neurorehabilitation
,”
Proceedings of IEEE International Conference on Rehabilitation and Robotics
, pp.
299
302
.
11.
Yang
,
G.
,
Lin
,
W.
,
Kurbanhusen
,
M. S.
,
Pham
,
C. B.
, and
Yeo
,
S. H.
, 2005, “
Kinematic Design of a 7-DOF Cable-Driven Humanoid Arm: A Solution-in-Nature Approach
,”
Proceedings IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, pp.
444
449
.
12.
Agrawal
,
S. K.
,
Dubey
,
V. N.
,
Gangloff
,
J. J.
, Jr.
,
Brackbill
,
E.
,
Mao
,
Y.
, and
Sangwan
,
V.
, 2009, “
Design and Optimization of a Cable Driven Upper Arm Exoskeleton
,”
ASME J. Med. Devices
,
3
, p.
031004
.
13.
Valero
,
F.
,
Mata
,
V.
, and
Besa
,
A.
, 2006, “
Trajectory Planning in Workspaces With Obstacles Taking into Account the Dynamic Robot Behaviour
,”
Mech. Mach. Theory
,
41
, pp.
525
536
.
14.
Perreault
,
S.
, and
Gosselin
,
C. M.
, 2008, “
Cable-Driven Parallel Mechanisms: Application to a Locomotion Interface
,”
J. Mech. Des.
,
130
, pp.
102301
.
15.
Oh
,
S.-R.
, and
Agrawal
,
S. K.
, 2005, “
Cable Suspended Planar Robots With Redundant Cables: Controllers With Positive Tension
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
457
464
.
16.
Pusey
,
J.
,
Fattah
,
A.
,
Agrawal
,
S.
, and
Messina
,
E.
, 2004, “
Design and Workspace Analysis of a 6-6 Cable-Suspended Parallel Robot
,”
Mech. Mach. Theory
,
39
, pp.
761
778
.
17.
Barrette
,
G.
, and
Gosselin
,
C. M.
, 2005, “
Determination of the Dynamic Workspace of Cable-Driven Planar Parallel Mechanisms
,”
ASME J. Mech. Des.
,
127
, pp.
242
248
.
18.
Gouttefarde
,
M.
,
Merlet
,
J.-P.
, and
Daney
,
D.
, 2007, “
Wrench-Feasible Workspace of Parallel Cable-Driven Mechanisms
,”
Proceedings of IEEE International Conference Robotics and Automation
, pp.
1492
1497
.
19.
Bosscher
,
P.
,
Riechel
,
A. T.
, and
Ebert-Uphoff
,
I.
, 2006, “
Wrench-Feasible Workspace Generation for Cable-Driven Robots
,”
IEEE Trans. Rob.
,
22
(
5
), pp.
890
902
.
20.
Pham
,
C. B.
,
Yeo
,
S. H.
,
Yang
,
G.
, and
Chen
,
I.-M.
, 2009, “
Workspace Analysis of Fully Restrained Cable-Driven Manipulators
,”
Rob. Auton. Syst.
,
57
, pp.
901
912
.
21.
Pham
,
C. B.
,
Yeo
,
S. H.
,
Yang
,
G.
,
Kurbanhusen
,
M. S.
, and
Chen
,
I.-M.
, 2006, “
Force-Closure Workspace Analysis of Cable-Driven Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
, pp.
53
69
.
22.
Diao
,
X.
, and
Ma
,
O.
, 2007, “
A Method of Verifying Force-Closure Condition for General Cable Manipulators With Seven Cables
,”
Mech. Mach. Theory
,
42
, pp.
1563
1576
.
23.
Gouttefarde
,
M.
, and
Gosselin
,
C. M.
, 2006, “
Analysis of the Wrench-Closure Workspace of Planar Parallel Cable-Driven Mechanisms
,”
IEEE Trans. Rob.
,
22
(
3
), pp.
434
445
.
24.
Stump
,
E.
, and
Kumar
,
V.
, 2006, “
Workspaces of Cable-Actuated Parallel Manipulators
,”
J. Mech. Des.
,
128
, pp.
159
167
.
25.
Williams
,
R. L.
, II
, and
Gallina
,
P.
, 2002, “
Planar Cable-Direct-Driven Robots: Design for Wrench Exertion
,”
J. Int. Rob. Syst.
,
35
, pp.
203
219
.
26.
Aref
,
M. M.
, and
Taghirad
,
H. D.
, 2008, “
Geometrical Workspace Analysis of a Cable-Driven Redundant Parallel Manipulator: KNTU CDRPM
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robotics and System
, pp.
1958
1963
.
27.
Ming
,
A.
, and
Higuchi
,
T.
, 1994, “
Study on Multiple Degrees-Of-Freedom Positioning Mechanism Using Wires (Part 1)—Concept, Design and Control
,”
Int. J. Jpn. Social Eng.
,
28
(
2
), pp.
131
138
.
You do not currently have access to this content.