Cooperation and reward of strategic agents in an evolutionary optimization framework is explored in order to better solve engineering design problems. Agents in this Evolutionary Multi-Agent Systems (EMAS) framework rely on one another to better their performance, but also vie for the opportunity to reproduce. The level of cooperation and reward is varied by altering the amount of interaction between agents and the fitness function describing their evolution. The effect of each variable is measured using the problem objective function as a metric. Increasing the amount of cooperation in the evolving team is shown to lead to improved performance for several multimodal and complex numerical optimization and three-dimensional layout problems. However, fitness functions that utilize team-based rewards are found to be inferior to those that reward on an individual basis. The performance trends for different fitness functions and levels of cooperation remain when EMAS is applied to the more complex problem of three-dimensional packing as well.

References

References
1.
Jacobson
,
S. H.
, and
Yucesan
,
E.
, 2004,
“Analyzing the Performance of Generalized Hill Climbing Algorithms,”
J. Heuristics
,
10
, pp.
387
405
.
2.
Cagan
,
J.
,
Shimada
,
K.
, and
Yin
,
S.
, 2002,
“A Survey of Computational Approaches to Three-dimensional Layout Problems,”
Comput. Aided Des.
,
34
(
8
), pp.
597
611
.
3.
Smith
,
J.
, and
Fogarty
,
T. C.
, 1996,
“Self-Adaptation of Mutation Rates in a Steady State Genetic Algorithm,”
International Conference on Evolutionary Computation
, pp.
318
323
.
4.
Moral
,
R. J.
, and
Dulikravich
,
G. S.
, 2008,
“Multi-Objective Hybrid Evolutionary Optimization with Automatic Switching Among Constituent Algorithms,”
AIAA J.
,
46
(
3
), pp.
673
681
.
5.
Gomes
,
C. P.
, and
Selman
,
B.
, 2001,
“Algorithm Portfolios,”
Artif. Intell.
,
126
, pp.
43
62
.
6.
Rachlin
,
J.
,
Goodwin
,
R.
,
Murthy
,
S.
,
Akkiraju
,
R.
,
Wu
,
F.
,
Kumaran
,
S.
, and
Das
,
R.
, 1999,
“A-Teams: An Agent Architecture for Optimization and Decision-Support,”
Lect. Notes Comput. Sci.
,
1555
, pp.
261
276
.
7.
DeSouza
,
P. S.
, and
Talukdar
,
S. N.
, 1993, “
Asynchronous Organizations for Multi-Algorithm Problems
,”
Proceedings of the 1993 ACM/SIGAPP Symposium on Applied Computing: States of the Art and Practice,
Indianapolis
, IN,
USA
, Feb. 14–16, pp.
286
293
.
8.
Russell
,
S. J.
, and
Norvig
,
P.
, 1995,
Artificial Intelligence: A Modern Approach
,
Prentice Hall, Englewood Cliffs
,
NJ
.
9.
Talukdar
,
S. N.
,
Baerentzen
,
L.
,
Gove
,
A.
, and
DeSouza
,
P. S.
, 1998,
“Asynchronous Teams: Cooperation Schemes for Autonomous Agents,”
J. Heuristics
,
4
, pp.
295
321
.
10.
Campbell
,
M. I.
,
Cagan
,
J.
, and
Kotovsky
,
K.
, 1999,
“A-Design: An Agent-Based Approach to Conceptual Design in a Dynamic Environment,”
Res. Eng. Des.
,
11
(
3
), pp.
172
192
.
11.
Nii
,
H. Y.
, 1986,
“Blackboard Systems,”
Stanford University
, Technical Report No. STAN-CS-86-1123/KSL-86-18.
12.
Hanna
,
L.
, and
Cagan
,
J.
, 2009,
“Evolutionary Multi-Agent Systems: An Adaptive and Dynamic Approach to Optimization,”
J. Mech. Des.
,
131
(
1
), pp.
011010
-1–011010-
8
.
13.
Hanna
,
L.
, and
Cagan
,
J.
, 2008,
“Evolutionary Multi-Agent Systems, An Adaptive Approach to Optimization in Dynamic Environments
,”
Proceedings of the ASME International Design Engineering Technical Conference and Comp. and Information in Eng. Conference IDETC/CIE
,
Design Automation Conference
,
New York, NY
, Aug. 3–6.
14.
Potter
,
M. A.
, and
DeJong
,
K. A.
, 2000,
“Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents,”
Evol. Comput.
,
8
(
1
), pp.
1
29
.
15.
Wageman
,
R.
, and
Baker
,
G.
, 1997,
“Incentives and Cooperation: The Joint Effects of Task and Reward Interdependence on Group Performance,”
J. Organiz. Behav.
,
18
, pp.
139
158
.
16.
Lawler
,
E. E.
, 2000,
Rewarding Excellence: Pay Strategies for the New Economy
,
Jossey-Bass, San Francisco
.
17.
Olson
,
J. T.
, and
Cagan
,
J.
, 2004,
“Inter Agent Ties in Team-Based Computational Configuration Design,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
18
(
2
), pp.
135
152
.
18.
Torczon
,
V.
, and
Trosset
,
M. W.
, 1998,
“From Evolutionary Operation to Parallel Direct Search: Pattern Search Algorithms for Numerical Optimization,”
Proceedings of the 29th Symposium on the Interface, Houston, TX, May 14–17, David W. Scott, ed.,
Comput. Sci. Stat.
,
29
(
1
), pp.
396
401
.
19.
Yin
,
S.
, and
Cagan
,
J.
, 2000,
“An Extended Pattern Search Algorithm for Three-Dimensional Component Layout,”
J. Mech. Des.
,
122
(
1
), pp.
102
108
.
20.
Aladahalli
,
C.
,
Cagan
,
J.
, and
Shimada
,
K.
, 2007,
“Objective Function Based Pattern Search–An Implementation for 3D Component Layout,”
J. Mech. Des.
,
129
, pp.
255
265
.
21.
Haupt
,
R. L.
, and
Haupt
,
S. E.
, 2004,
Practical Genetic Algorithms
,
Wiley
,
Hoboken, NJ
.
22.
Ikonen
,
I.
,
Biles
,
W. E.
,
Kumar
,
A.
,
Regade
,
R. K.
, and
Wissel
,
J. C.
, 1997,
“A Genetic Algorithm for Packing Three-Dimensional Non-Convex Objects Having Cavities and Holes,”
Proceedings of the Seventh International Conference on Genetic Algorithms
.
23.
House
,
R. L.
, and
Dagli
,
C. H.
, 1992,
“An Approach to Three-Dimensional Packing Using Genetic Algorithms,”
Intell. Eng. Syst. Through Artif. Neural Networks
,
2
, pp.
937
942
.
24.
Hustin
,
S.
, and
Sangiovanni-Vincentelli
,
A.
, 1987,
“TIM, a New Standard Cell Placement Program Based on the Simulated Annealing Algorithm,”
IEEE Physical Design Workshop on Placement and Floorplanning
,
Hilton Head
,
SC
.
25.
Huang
,
M. D.
,
Romeo
,
F.
, and
Sangiovanni-Vincentelli
,
A.
, 1986,
“An Efficient General Cooling Schedule for Simulated Annealing,”
IEEE International Conference on Computer Aided Design–Digest of Technical Papers
, pp.
381
384
.
26.
Szykman
,
S.
, and
Cagan
,
J.
, 1995,
“A Simulated Annealing-Based Approach to Three-Dimensional Component Packing,”
J. Mech. Des.
,
117
(
2A
), pp.
308
315
.
27.
Cagan
,
J.
,
Degentesh
,
D.
, and
Yin
,
S.
, 1998,
“A Simulated Annealing-Based Algorithm Using Hierarchical Models for General Three-Dimensional Component Layout,”
Comput. Aided Des.
,
30
(
10
), pp.
781
790
.
28.
Kolli
,
A.
,
Cagan
,
J.
, and
Rutenbar
,
R. A.
, 1996,
“Packing of Generic, Three-Dimensional Components Based on Multi-Resolution Modeling,”
Proceedings of the 22nd ASME Design Automation Conference (DAC-1479)
,
Irvine
,
CA
.
29.
Chapra
,
S. C.
, and
Canale
,
R. P.
, 2002,
Numerical Methods for Engineers
,
McGraw-Hill
,
New York
.
30.
Fadel
,
G. M.
,
Sinha
,
A.
, and
McKee
,
T.
, 2001,
“Packing Optimization Using a Rubberband Analogy,”
Proceedings of the 2001 ASME Design Engineering Technical Conferences and Computer Information Engineering Conference
,
Pittsburgh, PA
.
31.
Tiwari
,
S.
,
Fadel
,
G. M.
, and
Fenyes
,
P.
, 2008,
“Fast and Efficient Compact Packing Algorithm for Free-Form Objects,”
Proceedings of the 34th ASME Design Automation Conference
,
New York
.
32.
Aladahalli
,
C.
,
Cagan
,
J.
, and
Shimada
,
K.
, 2007,
“Objective Function Effect-Based Pattern Search: Theoretical Framework Inspired by 3D Component Layout,”
J. Mech. Des.
,
129
(
3
), pp.
243
254
.
33.
Fournier
,
A.
,
Fussell
,
D.
, and
Carpenter
,
L.
, 1982,
“Computer Rendering of Stochastic Models,”
Commun. ACM
,
25
(
6
), pp.
371
384
.
34.
Miller
,
G. S.
, 1986,
“The Definition and Rendering of Terrain Maps,”
International Conference on Computer Graphics and Interactive Techniques
, pp.
39
48
.
35.
Sorkin
,
G. B.
, 1992,
Theory and Practice of Simulated Annealing on Special Energy Landscapes
,
University of California Press at Berkeley
,
Berkeley, CA
.
36.
Dowsland
,
K. A.
, and
Dowsland
,
W. B.
, 1992,
“Packing Problems,”
Eur. J. Oper. Res.
,
56
, pp.
2
14
.
37.
Martello
,
S.
,
Pisinger
,
D.
, and
Vigo
,
D.
, 2000,
“The Three-Dimensional Bin-Packing Problem,”
Oper. Res.
,
48
(
2
), pp.
256
267
.
38.
Grignon
,
P. M.
, and
Fadel
,
G. M.
, 2004,
“A GA Based Configuration Design Optimization Method,”
J. Mech. Des.
,
126
(
6
), pp.
6
16
.
39.
Mortensen
,
M. E.
, 1997,
Geometric Modeling
,
Wiley
,
New York
.
40.
Field
,
A.
, 2005,
Discovering Statistics Using SPSS
,
Sage
,
London
.
41.
Hackman
,
J. R.
, 1987
, “The Design of Work Teams,”
in
Handbook of Organizational Behavior
,
J. W.
Lorsch
, ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
315
342
.
42.
Carley
,
K. M.
, and
Prietula
,
M. J.
, eds., 1994,
Computational Organization Theory
,
Erlbaum
,
Hillsdale, NJ
.
43.
Sarin
,
S.
, and
Mahajan
,
V.
, 2001,
“The Effect of Reward Structures on the Performance of Cross-Functional Product Development Teams,”
J. Marketing
,
65
, pp.
35
53
.
44.
Wilkins
,
D. E.
, and
Lawhead
,
P. B.
, 2000,
“Evaluating Individuals in Team Projects,”
ACM Special Interest Group Comput. Sci. Educ. Bull.
,
32
(
1
), pp.
172
175
.
45.
Hayes
,
J. H.
,
Lethbridge
,
T. C.
, and
Port
,
D.
, 2003,
“Evaluating Individual Contribution Toward Group Software Engineering Projects,”
Proceedings of the 25th International Conference on Software Engineering
, pp.
622
627
.
You do not currently have access to this content.