This paper proposes an optimum design method, based on our level set-based topology optimization method, for maximizing thermal diffusivity in problems dealing with generic heat transfer boundaries that include design-dependent boundary conditions. First, a topology optimization method using a level set model incorporating a fictitious interface energy for regularizing the topology optimization is briefly discussed. Next, an optimization method for maximizing thermal diffusivity is formulated based on the concept of total potential energy. An optimization algorithm that uses the finite element method when solving the equilibrium equation and updating the level set function is then constructed. Finally, several numerical examples are provided to confirm the utility and validity of the proposed topology optimization method.

1.
Prager
,
W.
, 1974, “
A Note on Discretized Michell Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
3
, pp.
349
355
.
2.
Svanberg
,
K.
, 1982, “
Optimal Geometry in Truss Design
,”
Foundations of Structural Optimization: A Unified Approach
,
Wiley
,
New York
.
3.
Zienkiewicz
,
O. C.
, and
Campbell
,
J. S.
, 1973, “
Shape Optimization and Sequential Linear Programming
,”
Optimum Structural Design
,
Wiley
,
New York
.
4.
Mohammadi
,
B.
, and
Pironneau
,
O.
, 2001,
Applied Shape Optimization for Fluids
,
Oxford University Press
,
Oxford
.
5.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
, pp.
197
224
.
6.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2003,
Topology Optimization: Theory, Methods, and Applications
,
Springer-Verlag
,
Berlin
.
7.
Cherkaev
,
A.
, 2000,
Variational Methods for Structural Optimization
,
Springer-Verlag
,
New York
.
8.
Suzuki
,
K.
, and
Kikuchi
,
N.
, 1991, “
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
93
, pp.
291
318
.
9.
Díaz
,
A. R.
, and
Kikuchi
,
N.
, 1992, “
Solutions to Shape and Topology Eigenvalue Optimization Problems Using a Homogenization Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
35
, pp.
1487
1502
.
10.
Ma
,
Z. -D.
,
Kikuchi
,
N.
, and
Cheng
,
H. -C.
, 1995, “
Topological Design for Vibrating Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
121
, pp.
259
280
.
11.
Diaz
,
A. R.
, and
Mukherjee
,
R.
, 2006, “
A Topology Optimization Problem in Control of Structures Using Modal Disparity
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
536
542
.
12.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
0161-8458,
119
, pp.
238
245
.
13.
Prasad
,
J.
, and
Diaz
,
A. R.
, 2006, “
Synthesis of Bistable Periodic Structures Using Topology Optimization and a Genetic Algorithm
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
1298
1306
.
14.
Díaz
,
A. R.
, and
Belding
,
B.
, 1993, “
On Optimum Truss Layout by a Homogenization Method
,”
ASME J. Mech. Des.
0161-8458,
115
, pp.
367
374
.
15.
Saxena
,
A.
, 2005, “
Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
745
753
.
16.
Cherkaev
,
A.
, 2000,
Archive of Applied Mechanics
,
Springer-Verlag
,
Berlin
.
17.
Allaire
,
G.
, 2002,
Shape Optimization by the Homogenization Method
,
Springer-Verlag
,
Berlin
.
18.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
, 1999, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
0939-1533,
69
, pp.
635
654
.
19.
Rozvany
,
G. I. N.
, 2001, “
Aims, Scope, Methods, History and Unified Terminology of Computer-Aided Topology Optimization in Structural Mechanics
,”
Struct. Multidiscip. Optim.
1615-147X,
21
, pp.
90
108
.
20.
Bendsøe
,
M. P.
, 1989, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
0934-4373,
1
, pp.
193
202
.
21.
Gao
,
T.
,
Zhang
,
W.
,
Zhu
,
J.
, and
Xu
,
Y.
, 2006, “
Topology Optimization of Heat Conduction Problem Involving Design-Dependent Effect
,”
Proceedings of the Fourth China-Japan Korea Joint Symposium on Structural and Mechanical Systems
.
22.
Iga
,
A.
,
Nishiwaki
,
S.
,
Izui
,
K.
, and
Yoshimura
,
M.
, 2009, “
Topology Optimization for Thermal Conductors With Heat Convection and Conduction Including Design-Dependent Effects
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
2721
2732
.
23.
Yoon
,
G. H.
, and
Kim
,
Y. Y.
, 2005, “
The Element Connectivity Parameterization Formulation for the Topology Design Optimization of Multiphysics System
,”
Int. J. Numer. Methods Eng.
0029-5981,
64
, pp.
1649
1677
.
24.
Chen
,
B. C.
, and
Kikuchi
,
N.
, 2001, “
Topology Optimization With Design-Dependent Loads
,”
Finite Elem. Anal. Design
0168-874X,
37
, pp.
57
70
.
25.
Lee
,
J. W.
, and
Kim
,
Y. Y.
, 2009, “
Rigid Body Modeling Issue in Acoustical Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
198
, pp.
1017
1030
.
26.
Yoon
,
G. H.
, and
Sigmund
,
O.
, 2008, “
A Monolithic Approach for Topology Optimization of Electrostatically Actuated Devices
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
197
, pp.
4062
4075
.
27.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
, 2003, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
227
246
.
28.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.
, 2004, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
0021-9991,
194
, pp.
363
393
.
29.
Wang
,
M. Y.
,
Chen
,
S.
,
Wang
,
X.
, and
Mei
,
Y.
, 2005, “
Design of Multimaterial Compliant Mechanisms Using Level-Set Methods
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
941
956
.
30.
Yamada
,
T.
,
Yamasaki
,
S.
,
Nishiwaki
,
S.
,
Izui
,
K.
, and
Yoshimura
,
M.
, 2008, “
A Study of Boundary Settings in the Design Domain for Structural Optimization Based on the Level Set Method
,”
Transactions of the Japan Society for Industrial and Applied Mathematics
0917-2246,
18
, pp.
487
505
.
31.
Yamada
,
T.
,
Izui
,
K.
,
Nishiwaki
,
S.
, and
Takezawa
,
A.
, 2010, “
A Topology Optimization Method Based on the Level Set Method Incorporating a Fictitious Interface Energy
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
199
, pp.
2876
2891
.
32.
Cahn
,
J. W.
, and
Hilliard
,
J. E.
, 1958, “
Free Energy of a Nonuniform System. I. Interfacial Free Energy
,”
J. Chem. Phys.
0021-9606,
28
, pp.
258
267
.
33.
Allen
,
S. M.
, and
Cahn
,
J. W.
, 1979, “
A Microscopic Theory for Antiphase Boundary Motion and Its Application to Antiphase Domain Coarsening
,”
Acta Metall.
0001-6160,
27
, pp.
1085
1095
.
34.
Tikhonov
,
A. N.
, and
Arsenin
,
V. Y.
, 1997,
Solutions of Ill-Posed Problems
,
Winston and Sons
,
Washington, D.C.
35.
Braides
,
A.
, 2002, Γ
-Convergence for Beginners
(
Oxford Lecture Series in Mathematics and Its Applications
),
Oxford University Press
,
Oxford
, Vol.
22
.
36.
Sokolowski
,
J.
, and
Zochowski
,
A.
, 1999, “
On the Topological Derivatives in Shape Optimization
,”
SIAM J. Control Optim.
0363-0129,
37
, pp.
1251
1272
.
37.
He
,
L.
,
Kao
,
C. Y.
, and
Osher
,
S.
, 2007, “
Incorporating Topological Derivatives Into Shape Derivatives Based Level Set Methods
,”
J. Comput. Phys.
0021-9991,
225
, pp.
891
909
.
38.
Novotny
,
A. A.
,
Feijòo
,
R. A.
,
Taroco
,
E.
, and
Padra
,
C.
, 2003, “
Topological Sensitivity Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
803
829
.
39.
Osher
,
S.
, and
Fedkiw
,
R.
, 2003,
Level Set Methods and Dynamic Implicit Surfaces
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.