Variability is the inherent randomness in systems, whereas incertitude is due to lack of knowledge. In this paper, a generalized hidden Markov model (GHMM) is proposed to quantify aleatory and epistemic uncertainties simultaneously in multiscale system analysis. The GHMM is based on a new imprecise probability theory that has the form of generalized interval. The new interval probability resembles the precise probability and has a similar calculus structure. The proposed GHMM allows us to quantify cross-scale dependency and information loss between scales. Based on a generalized interval Bayes’ rule, three cross-scale information assimilation approaches that incorporate uncertainty propagation are also developed.
Issue Section:
Research Papers
1.
Walley
, P.
, 1991, Statistical Reasoning With Imprecise Probabilities
, Chapman & Hall
, London
.2.
Oberkampf
, W. L.
, DeLand
, S. M.
, Rutherford
, B. M.
, Diegert
, K. V.
, and Alvin
, K. F.
, 2002, “Error and Uncertainty in Modeling and Simulation
,” Reliab. Eng. Syst. Saf.
0951-8320, 75
(3
), pp. 333
–357
.3.
Klir
, G. J.
, 2006, Uncertainty and Information: Foundation of Generalized Information Theory
, Wiley
, New York
.4.
Campolongo
, F.
, Saltelli
, A.
, and Tarantola
, S.
, 2000, “Sensitivity Analysis as an Ingredient of Modeling
,” Stat. Sci.
0883-4237, 15
(4
), pp. 377
–395
.5.
Hoffman
, F. O.
, and Hammonds
, J. S.
, 1994, “Propagation of Uncertainty in Risk Assessments: The Need to Distinguish Between Uncertainty Due to Lack of Knowledge and Uncertainty Due to Variability
,” Risk Anal.
0272-4332, 14
(5
), pp. 707
–712
.6.
Elishakoff
, I.
, and Ren
, Y.
, 2003, Finite Element Methods for Structures With Large Stochastic Variations
, Oxford University Press
, Oxford
.7.
Liu
, W. K.
, Belytschko
, T.
, and Mani
, A.
, 1986, “Random Field Finite Elements
,” Int. J. Numer. Methods Eng.
0029-5981, 23
(10
), pp. 1831
–1845
.8.
Ghanem
, R. G.
, and Spanos
, P. D.
, 2003, Stochastic Finite Elements: A Spectral Approach
, Springer-Verlag
, New York
.9.
Xiu
, D.
, and Karniadakis
, G. E.
, 2003, “Modeling Uncertainty in Flow Simulations via Generalized Polynomial Chaos
,” J. Comput. Phys.
0021-9991, 187
(1
), pp. 137
–167
.10.
Xiu
, D.
, and Hesthaven
, J. S.
, 2005, “High-Order Collocation Methods for Differential Equations With Random Inputs
,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204, 27
(3
), pp. 1118
–1139
.11.
Babuška
, I.
, Nobile
, F.
, and Tmpone
, R.
, 2007, “A Stochastic Collocation Method for Elliptic Partial Differential Equations With Random Input Data
,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429, 45
(3
), pp. 1005
–1034
.12.
Sudret
, B.
, and Der Kiureghian
, A.
, 2000, “Stochastic Finite Element Methods and Reliability—A State-of-the-Art Report
,” University of California Berkeley Report No. UCB/SEMM-2000/08.13.
Kubin
, L. P.
, Canova
, G.
, Condat
, M.
, Devincre
, B.
, Pontikis
, V.
, and Bréchet
Y.
, 1992, “Dislocation Microstructures in Two Dimensions: I. Relaxed Structures, Modeling Simulation
,” Solid State Phenom.
1012-0394, 23–24
, pp. 455
–472
.14.
Hähner
, P.
, 1996, “A Theory of Dislocation Cell Formation Based on Stochastic Dislocation Dynamics
,” Acta Mater.
1359-6454, 44
(6
), pp. 2345
–2352
.15.
El-Azab
, A.
, 2000, “Statistical Mechanics Treatment of the Evolution of Dislocation Distributions in Single Crystals
,” Phys. Rev. B
0556-2805, 61
(18
), pp. 11956
–11966
.16.
Zaiser
, M.
, 2001, “Statistical Modeling of Dislocation Systems
,” Mater. Sci. Eng., A
0921-5093, 309–310
, pp. 304
–315
.17.
Hiratani
, M.
, and Zbib
, H. M.
, 2003, “On Dislocation-Defect Interactions and Patterning: Stochastic Discrete Dislocation Dynamics (SDD)
,” J. Nucl. Mater.
0022-3115, 323
(2–3
), pp. 290
–303
.18.
Liu
, W. K.
, Siad
, L.
, Tian
, R.
, Lee
, S.
, Lee
, D.
, Yin
, X.
, Chen
, W.
, Chan
, S.
, Olson
, G. B.
, Lindgen
, L. -E.
, Horstemeyer
, M. F.
, Chang
, Y. -S.
, Choi
, J. -B.
, and Kim
, Y. J.
, 2009, “Complexity Science of Multiscale Materials via Stochastic Computations
,” Int. J. Numer. Methods Eng.
0029-5981, 80
(6–7
), pp. 932
–978
.19.
Choi
, M. J.
, Chandrasekaran
, V.
, Malioutov
, D. M.
, Johnson
, J. K.
, and Willsky
, A. S.
, 2008, “Multiscale Stochastic Modeling for Tractable Inference and Data Assimilation
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 197
(43–44
), pp. 3492
–3515
.20.
Chamoin
, L.
, Oden
, J. T.
, and Prudhomme
, S.
, 2008, “A Stochastic Coupling Method for Atomic-to-Continuum Monte-Carlo Simulations
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 197
(43–44
), pp. 3530
–3546
.21.
Ganapathysubramanian
, B.
, and Zabaras
, N.
, 2008, “Modeling Multiscale Diffusion Processes in Random Heterogeneous Media
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 197
(43–44
), pp. 3560
–3573
.22.
Arnst
, M.
, and Ghanem
, R.
, 2008, “Probabilistic Equivalence and Stochastic Model Reduction in Multiscale Analysis
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 197
(43–44
), pp. 3584
–3592
.23.
Yin
, X.
, Lee
, S.
, Chen
, W.
, Liu
, W. K.
, and Horstemeyer
, M. F.
, 2009, “Efficient Random Field Uncertainty Propagation in Design Using Multiscale Analysis
,” ASME J. Mech. Des.
0161-8458, 131
(2
), p. 021006
.24.
Chen
, W.
, Yin
, X.
, Lee
, S.
, and Liu
, W. K.
, 2010, “A Multiscale Design Methodology for Hierarchical Systems With Random Field Uncertainty
,” ASME J. Mech. Des.
0161-8458, 132
(4
), p. 041006
.25.
van Fraassen
, B.
, 1989, Laws and Symmetry
, Clarendon
, Oxford
.26.
Dempster
, A.
, 1967, “Upper and Lower Probabilities Induced by a Multi-Valued Mapping
,” Ann. Math. Stat.
0003-4851, 38
(2
), pp. 325
–339
.27.
Shafer
, G. A.
, 1990, Mathematical Theory of Evidence
, Princeton University Press
, Princeton, NJ
.28.
Williams
, P. M.
, 2007, “Notes on Conditional Previsions
,” Int. J. Approx. Reason.
0888-613X, 44
, pp. 366
–383
.29.
Dubois
, D.
, and Prade
, H.
, 1988, Possibility Theory: An Approach to Computerized Processing of Uncertainty
, Plenum
, New York
.30.
Ferson
, S.
, Kreinovich
, V.
, Ginzburg
, L.
, Myers
, D. S.
, and Sentz
, K.
, 2003, “Constructing Probability Boxes and Dempster-Shafer Structures
,” Sandia National Laboratories Technical Report No. SAND2002-4015.31.
Weichselberger
, K.
, 2000, “The Theory of Interval-Probability as a Unifying Concept for Uncertainty
,” Int. J. Approx. Reason.
0888-613X, 24
(2–3
), pp. 149
–170
.32.
Molchanov
, I.
, 2005, Theory of Random Sets
, Springer
, London
.33.
Kuznetsov
, V. P.
, 1995, “Interval Methods for Processing Statistical Characteristics
,” Proceedings of the 1995 International Workshop on Applications of Interval Computations
, El Paso, TX.34.
Möller
, B.
, and Beer
, M.
, 2004, Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics
, Springer
, Berlin
.35.
Neumaier
, A.
, 2004, “Clouds, Fuzzy Sets, and Probability Intervals
,” Reliab. Comput.
1385-3139, 10
(4
), pp. 249
–272
.36.
Wang
, Y.
, 2008, “Imprecise Probabilities With a Generalized Interval Form
,” Proceedings of the Third Workshop on Reliability Engineering Computing (REC’08)
, Savannah, GA, pp. 45
–59
.37.
Wang
, Y.
, 2010, “Imprecise Probabilities Based on Generalized Intervals for System Reliability Assessment
,” International Journal of Reliability & Safety
1479-389X, 4
(4
), pp. 319
–342
.38.
Kaucher
, E.
, 1980, “Interval Analysis in the Extended Interval Space IR
,” Computing Supplementa
, Suppl. 2, Springer-Verlag
, New York
, pp. 33
–49
.39.
Gardeñes
, E.
, Sainz
, M. Á.
, Jorba
, L.
, Calm
, R.
, Estela
, R.
, Mielgo
, H.
, and Trepat
, A.
, 2001, “Modal Intervals
,” Reliab. Comput.
1385-3139, 7
(2
), pp. 77
–111
.40.
Dimitrova
, N. S.
, Markov
, S. M.
, and Popova
, E. D.
, 1992, “Extended Interval Arithmetics: New Results and Applications
,” Computer Arithmetic and Enclosure Methods
, L.
Atanassova
and J.
Herzberger
, eds., pp. 225
–232
.41.
Moore
, R. E.
, 1966, Interval Analysis
, Prentice-Hall
, Englewood Cliffs, NJ
.42.
Wang
, Y.
, 2008, “Semantic Tolerance Modeling With Generalized Intervals
,” ASME J. Mech. Des.
0161-8458, 130
(8
), p. 081701
.43.
Wang
, Y.
, 2008, “Closed-Loop Analysis in Semantic Tolerance Modeling
,” ASME J. Mech. Des.
0161-8458, 130
(6
), p. 061701
.44.
Wang
, Y.
, 2008, “Interpretable Interval Constraint Solvers in Semantic Tolerance Analysis
,” Comput.-Aided Des.
0010-4485, 5
(5
), pp. 654
–666
.45.
MacDonald
, I. L.
, and Zucchini
, W.
, 1997, Hidden Markov and Other Models for Discrete-Valued Time Series
, Chapman and Hall
, London
/CRC
, Boca Raton, FL
.46.
Cappé
, O.
, Moulines
, E.
, and Rydén
, T.
, 2005, Inference in Hidden Markov Models
, Springer
, New York
.47.
Fine
, S.
, Singer
, Y.
, and Tishby
, N.
, 1998, “The Hierarchical Hidden Markov Model: Analysis and Applications
,” Mach. Learn.
0885-6125, 32
, pp. 41
–62
.48.
Bouman
, C. A.
, and Shapiro
, M.
, 1994, “A Multiscale Random Field Model for Bayesian Image Segmentation
,” IEEE Trans. Image Process.
1057-7149, 3
(2
), pp. 162
–177
.49.
Laferté
, J. M.
, Perez
, P.
, and Heitz
, F.
, 2000, “Discrete Markov Modeling and Inference on the Quad-Tree
,” IEEE Trans. Image Process.
1057-7149, 9
(3
), pp. 390
–404
.50.
Deshmukh
, S.
, and Ounaies
, Z.
, 2009, “Single Walled Carbon Nanotube (SWNT)-Polymide Nanocomposites as Electrostrictive Materials
,” Sens. Actuators, A
0924-4247, 155
(2
), pp. 246
–252
.51.
Dai
, H.
, Wong
, E. W.
, and Lieber
, C. M.
, 1996, “Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes
,” Science
0036-8075, 272
(5261
), pp. 523
–526
.52.
Ebbesen
, T. W.
, Lezec
, H. J.
, Hiura
, H.
, Bennett
, J. W.
, Ghaemi
, H. F.
, and Thio
, T.
, 1996, “Electrical Conductivity of Individual Carbon Nanotubes
,” Nature (London)
0028-0836, 382
, pp. 54
–56
.53.
Bauhofer
, W.
, and Kovacs
, J. Z.
, 2009, “A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites
,” Compos. Sci. Technol.
0266-3538, 69
(10
), pp. 1486
–1498
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.