A rational approach to the mechanical design of wheel rims as a typical periodic structure is presented in the current work. With novel application of the latest bidirectional evolutionary structural optimization method, a procedure is presented for the optimal topological design of wheel rims. Design applications are studied with realistic loads on a general vehicle in various scenarios, where the results not only demonstrate originalities of wheel patterns, but also provide insights into existing wheel designs. The simplicity and generic nature imply the general applicability of the proposed approach to a wide range of wheel designs.

1.
Bendsøe
,
M. P.
, 1989, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
0934-4373,
1
, pp.
193
202
.
2.
Rozvany
,
G. I. N.
,
Zhou
,
M.
, and
Birker
,
T.
, 1992, “
Generalized Shape Optimization Without Homogenization
,”
Struct. Optim.
0934-4373,
4
, pp.
250
252
.
3.
Xie
,
Y. M.
, and
Steven
,
G. P.
, 1993, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
0045-7949,
49
, pp.
885
896
.
4.
Xie
,
Y. M.
, and
Steven
,
G. P.
, 1997,
Evolutionary Structural Optimization
,
Springer
,
London
.
5.
Huang
,
X.
, and
Xie
,
Y. M.
, 2007, “
Convergent and Mesh-Independent Solutions for the Bi-Directional Evolutionary Structural Optimization Method
,”
Finite Elem. Anal. Design
0168-874X,
43
, pp.
1039
1049
.
6.
Huang
,
X.
, and
Xie
,
Y. M.
, 2009, “
Bi-Directional Evolutionary Topology Optimization of Continuum Structures With One or Multiple Materials
,”
Comput. Mech.
0178-7675,
43
(
3
), pp.
393
401
.
7.
Huang
,
X.
, and
Xie
,
Y. M.
, 2010,
Evolutionary Topology Optimization of Continuum Structures: Methods and Applications
,
Wiley
,
Chichester, England
.
8.
Rozvany
,
G. I. N.
, and
Querin
,
O. M.
, 2002, “
Combining ESO With Rigorous Optimality Criteria
,”
Int. J. Veh. Des.
0143-3369,
28
, pp.
294
299
.
9.
Rozvany
,
G. I. N.
, 2009, “
A Critical Review of Established Methods of Structural Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
37
(
3
), pp.
217
237
.
10.
Huang
,
X.
,
Zuo
,
Z. H.
, and
Xie
,
Y. M.
, 2010, “
Evolutionary Topological Optimization of Vibrating Continuum Structures for Natural Frequencies
,”
Comput. Struct.
0045-7949,
88
, pp.
357
364
.
11.
Cagan
,
J.
, and
Agogino
,
A. M.
, 1991, “
Inducing Constraint Activity in Innovative Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
5
(
1
), pp.
47
61
.
12.
Giger
,
M.
, and
Ermanni
,
P.
, 2005, “
Development of CFRP Racing Motorcycle Rims Using a Heuristic Evolutionary Algorithm Approach
,”
Struct. Multidiscip. Optim.
1615-147X,
30
, pp.
54
65
.
13.
Cugini
,
U.
,
Cascini
,
G.
,
Muzzupappa
,
M.
, and
Nigrelli
,
V.
, 2009, “
Integrated Computer-Aided Innovation: The PROSIT Approach
,”
Comput. Ind.
,
60
, pp.
629
641
.
14.
Huang
,
X.
, and
Xie
,
Y. M.
, 2008, “
Optimal Design of Periodic Structures Using Evolutionary Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
36
, pp.
597
606
.
15.
Zuo
,
Z. H.
,
Xie
,
Y. M.
, and
Huang
,
X.
, “
Optimal Topological Design of Periodic Structures for Natural Frequencies
,”
J. Struct. Eng.
0733-9445, to be published.
16.
Giger
,
M.
, 2001, “
Strukturanalyse einer Formel-1-Felge
,” Term Project IMES-ST-Nr 02-036, Centre of Structure Technologies, Institute of Mechanical Systems, ETH Zürich.
You do not currently have access to this content.