In this paper, a computational fluid dynamics (CFD) code is applied to two- and three-dimensional simulations of windage power loss generated by spur gears rotating in air. Emphasis is placed on the various meshes associated with the finite volume method and on the choice of turbulence model. Comparing CFD predictions with the power losses measured on a specific test rig, it is shown that the fluid ejection in the radial direction must be included in order to reproduce the experimental evidence. The relative importance of the losses generated by the gear front and rear faces along with those due to the teeth is discussed. The volumetric flow rate expelled by the teeth is analyzed and the influence of flanges is highlighted.

1.
Dawson
,
P. H.
, 1984, “
Windage Loss in Larger High-Speed Gears
,”
Proc. Inst. Mech. Eng.
0020-3483,
198
(
1
), pp.
51
59
.
2.
Dawson
,
P. H.
, 1988, “
High-Speed Gear Windage
,”
GEC Review
,
4
(
3
), pp.
164
167
.
3.
Diab
,
Y.
,
Ville
,
F.
,
Velex
,
P.
, and
Changenet
,
C.
, 2004, “
Windage Losses in High Speed Gears—Preliminary Experimental and Theoretical Results
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
903
908
.
4.
Winfree
,
D. D.
, 2000, “
Reducing Gear Windage Losses From High Speed Gears
,”
Proceedings of the DETC’00, ASME Power Transmission and Gearing Conference
, Baltimore, MD, pp.
747
756
.
5.
Anderson
,
N. E.
, and
Loewenthal
,
S. H.
, 1981, “
Effect of Geometry and Operating Conditions on Spur Gear System Power Loss
,”
ASME J. Mech. Des.
0161-8458,
103
, pp.
151
159
.
6.
Townsend
,
D. P.
, 1992,
Gear Handbook: The Design, Manufacture and Application of Gears
, 2nd ed.,
McGraw-Hill
,
New York
, pp.
12.24
12.28
.
7.
Seetharaman
,
S.
, and
Kahraman
,
A.
, 2009, “
Load-Independent Spin Power Losses of a Spur Gear Pair: Model Formulation
,”
ASME J. Tribol.
0742-4787,
131
(
2
), p.
022201
.
8.
Seetharaman
,
S.
,
Kahraman
,
A.
,
Moorhead
,
M. D.
, and
Petry-Johnson
,
T. T.
, 2009, “
Oil Churning Power Losses of a Gear Pair: Experiments and Model Validation
,”
ASME J. Tribol.
0742-4787,
131
(
2
), p.
022202
.
9.
Eastwick
,
C. N.
, and
Johnson
,
G.
, 2008, “
Gear Windage: A Review
,”
ASME J. Mech. Des.
0161-8458,
130
(
3
), p.
034001
.
10.
Wild
,
P. M.
,
Djilali
,
N.
, and
Vickers
,
G. W.
, 1996, “
Experimental and Computational Assessment of Windage Losses in Rotating Machinery
,”
ASME J. Fluids Eng.
0098-2202,
118
(
1
), pp.
116
122
.
11.
Al-Shibl
,
K.
,
Simmons
,
K.
, and
Eastwick
,
C. N.
, 2007, “
Modelling Windage Power Loss From an Enclosed Spur Gear
,”
Proc. Inst. Mech. Eng.
0020-3483,
221
, pp.
331
341
.
12.
Rapley
,
S.
,
Eastwick
,
C. N.
, and
Simmons
,
K.
, 2007, “
The Application of CFD to Model Windage Power Loss From a Spiral Bevel Gear
,”
Proceedings of the GT2007, ASME Turbo Expo 2007: Power for Land, Sea and Air
, Montreal, QC, Canada, Paper No. GT2007-27879.
13.
Hill
,
M. J.
,
Kunz
,
R. F.
,
Noack
,
R. W.
,
Long
,
L. N.
,
Morris
,
P. J.
, and
Handschuh
,
R. F.
, 2008, “
Application and Validation of Unstructured Overset CFD Technology for Rotorcraft Gearbox Windage Aerodynamics Simulation
,”
Proceedings of the 64th American Helicopter Society Annual Forum
, Montreal, QC, Canada.
14.
Changenet
,
C.
, and
Velex
,
P.
, 2008, “
Housing Influence on Churning Losses in Geared Transmissions
,”
ASME J. Mech. Des.
0161-8458,
130
(
6
), p.
062603
.
15.
Ferziger
,
J. H.
, and
Peric
,
M.
, 2002,
Computational Methods for Fluid Dynamics
, 2nd ed.,
Springer
,
NewYork
.
16.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
, 1992, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
0899-8213,
4
(
7
), pp.
1510
1520
.
17.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
(
8
), pp.
1598
1605
.
18.
Daily
,
J. W.
, and
Nece
,
R. E.
, 1960, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disk
,”
ASME J. Basic Eng.
0021-9223,
82
, pp.
217
232
.
You do not currently have access to this content.