This paper develops and illustrates a probabilistic approach for uncertainty representation and propagation in system analysis, when the information on the uncertain input variables and/or their distribution parameters may be available as either probability distributions or simply intervals (single or multiple). A unique aggregation technique is used to combine multiple interval data and to compute rigorous bounds on the system response cumulative distribution function. The uncertainty described by interval data is represented through a flexible family of probability distributions. Conversion of interval data to a probabilistic format enables the use of computationally efficient methods for probabilistic uncertainty propagation. Two methods are explored for the implementation of the proposed approach, based on (1) sampling and (2) optimization. The sampling-based strategy is more expensive and tends to underestimate the output bounds. The optimization-based methodology improves both aspects. The proposed methods are used to develop new solutions to challenge problems posed by the Sandia epistemic uncertainty workshop (Oberkampf et al., 2004, “Challenge Problems: Uncertainty in System Response Given Uncertain Parameters,” Reliab. Eng. Syst. Saf., 85, pp. 11–19). Results for the challenge problems are compared with earlier solutions.

1.
Ferson
,
S.
,
Kreinovich
,
V.
,
Hajagos
,
J.
,
Oberkampf
,
W.
, and
Ginzburg
,
L.
, 2007, “
Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty
,” Sandia National Laboratories Technical Report No. SAND2007-0939, Albuquerque, NM.
2.
Du
,
X.
,
Sudjianto
,
A.
, and
Huang
,
B.
, 2005, “
Reliability Based Design With Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
1068
1076
.
3.
Hailperin
,
T.
, 1986,
Boole’s Logic and Probability
,
North-Holland
,
Amsterdam
.
4.
Hyman
,
J. M.
, 1982, “
FORSIG: An Extension of FORTRAN With Significance Arithmetic
,” Los Alamos National Laboratory Report No. LA-9448-MS, Los Alamos, NM. See also the website http://math.lanl.gov/ams/report2000/significancearithmetic.htmlhttp://math.lanl.gov/ams/report2000/significancearithmetic.html
5.
Williamson
,
R. C.
, and
Downs
,
T.
, 1990, “
Probabilistic Arithmetic I: Numerical Methods for Calculating Convolutions and Dependency Bounds
,”
Int. J. Approx. Reason.
0888-613X,
4
, pp.
89
158
.
6.
Berleant
,
D.
, 1993, “
Automatically Verified Reasoning With Both Intervals and Probability Density Functions
,”
Interval Computations
,
2
, pp.
48
70
. 0002-7820
7.
Berleant
,
D.
, 1996, “
Automatically Verified Arithmetic on Probability Distributions and Intervals
,”
Applications of Interval Computations
,
B.
Kearfott
and
V.
Kreinovich
, eds.,
Kluwer Academic
,
Dordrecht, The Netherlands
, pp.
227
244
.
8.
Berleant
,
D.
, and
Goodman-Strauss
,
C.
, 1998, “
Bounding the Results of Arithmetic Operations on Random Variables of Unknown Dependency Using Intervals
,”
Reliab. Comput.
1385-3139,
4
, pp.
147
165
.
9.
Zhang
,
R.
, and
Mahadevan
,
S.
, 2000, “
Model Uncertainty and Bayesian Updating in Reliability-Based Inspection
,”
Struct. Safety
0167-4730,
22
, pp.
145
160
.
10.
Youn
,
B. D.
, and
Wang
,
P.
, 2008, “
Bayesian Reliability-Based Design Optimization Using Eigenvector Dimension Reduction (EDR) Method
,”
Struct. Multidiscip. Optim.
1615-147X,
36
, pp.
107
123
.
11.
Shafer
,
G.
, 1976,
A Mathematical Theory of Evidence
,
Princeton University Press
,
Princeton, NJ
.
12.
Oberkampf
,
W. L.
,
Helton
,
J. C.
, and
Sentz
,
K.
, 2001, “
Mathematical Representation of Uncertainty
,”
Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit
, Seattle, WA, Paper No. AIAA 2001-1645.
13.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
, 2006, “
A Design Optimization Method Using Evidence Theory
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
901
908
.
14.
Agarwal
,
H.
,
Renaud
,
J. E.
,
Preston
,
E. L.
, and
Padmanabhan
,
D.
, 2004, “
Uncertainty Quantification Using Evidence Theory in Multidisciplinary Design Optimization
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
(
1–3
), pp.
281
294
.
15.
Du
,
X.
, 2008, “
Unified Uncertainty Analysis by the First Order Reliability Method
,”
ASME J. Mech. Des.
0161-8458,
130
(
9
), p.
091401
.
16.
Guo
,
J.
, and
Du
,
X.
, 2007, “
Sensitivity Analysis With Mixture of Epistemic and Aleatory Uncertainties
,”
AIAA J.
0001-1452,
45
(
9
), pp.
2337
2349
.
17.
Guo
,
J.
, and
Du
,
X.
, 2009, “
Reliability Sensitivity Analysis With Random and Interval Variables
,”
Int. J. Numer. Methods Eng.
0029-5981,
78
(
13
), pp.
1585
1617
.
18.
Ben-Haim
,
Y.
, and
Elishakoff
,
I.
, 1990,
Convex Models of Uncertainty in Applied Mechanics
(
Studies in Applied Mechanics
, 25), Amsterdam, The Netherlands.
19.
Dubois
,
D.
, and
Prade
,
H.
, 1988,
Possibility Theory: An Approach to Computerized Processing of Uncertainty
, 1st ed.,
Plenum
,
New York
.
20.
Rao
,
S. S.
, and
Annamdas
,
K. K.
, 2009, “
An Evidence-Based Fuzzy Approach for the Safety Analysis of Uncertain Systems
,”
50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Palm Springs, CA, Paper No. AIAA-2009-2263.
21.
Oberkampf
,
W. L.
,
Helton
,
J. C.
,
Joslyn
,
C. A.
,
Wojtkiewicz
,
S. F.
, and
Ferson
,
S.
, 2004, “
Challenge Problems: Uncertainty in System Response Given Uncertain Parameters
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
, pp.
11
19
.
22.
Helton
,
J. C.
,
Johnson
,
J. D.
, and
Oberkampf
,
W. L.
, 2004, “
An Exploration of Alternative Approaches to the Representation of Uncertainty in Model Predictions
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
, pp.
39
71
.
23.
Ferson
,
S.
, and
Hajagos
,
J.
, 2004, “
Arithmetic With Uncertain Numbers: Rigorous and (Often) Best-Possible Answers
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
, pp.
135
152
.
24.
Berleant
,
D.
, and
Zhang
,
J.
, 2004, “
Representation and Problem Solving With Distribution Envelope Determination (DEnv)
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
, pp.
153
168
.
25.
Fetz
,
T.
, and
Oberguggenberger
,
M.
, 2004, “
Propagation of Uncertainty Through Multivariate Functions in the Framework of Sets of Probability Measures
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
, pp.
73
87
.
26.
Kozine
,
I. O.
, and
Utkin
,
L. V.
, 2004, “
An Approach to Combining Unreliable Pieces of Evidence and Their Propagation in a System Response Analysis
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
, pp.
103
112
.
27.
de Cooman
,
G.
, and
Troffaes
,
M. C. M.
, 2004, “
Coherent Lower Previsions in Systems Modeling: Products and Aggregation Rules
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
, pp.
113
134
.
28.
Li
,
W.
, and
Hyman
,
J. M.
, 2004, “
Computer Arithmetic for Probability Distribution Variables
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
, pp.
191
209
.
29.
Klir
,
G. J.
, 2004, “
Generalized Information Theory: Aims, Results, and Open Problems
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
, pp.
21
38
.
30.
Hall
,
J. W.
, and
Lawry
,
J.
, 2004, “
Generation, Combination and Extension of Random Set Approximations to Coherent Lower and Upper Probabilities
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
, pp.
89
101
.
31.
Rutherford
,
B.
, 2004, “
A Response-Modeling Approach to Characterization and Propagation of Uncertainty Specified Over Intervals
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
, pp.
211
222
.
32.
Ayyub
,
B. M.
, 2004, “
From Dissecting Ignorance to Solving Algebraic Problems
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
, pp.
223
238
.
33.
Helton
,
J. C.
,
Johnson
,
J. D.
,
Oberkampf
,
W. L.
, and
Sallaberry
,
C. J.
, 2008, “
Representation of Analysis Results Involving Aleatory and Epistemic Uncertainty
,” Sandia Report No. SAND2008-4379.
34.
Robert
,
C. P.
, and
Casella
,
G.
, 2004,
Monte Carlo Statistical Methods
, 2nd ed.,
Springer-Verlag
,
New York
.
35.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
36.
Ghanem
,
R.
, and
Spanos
,
P.
, 1991,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
.
37.
Cheng
,
H.
, and
Sandu
,
A.
, 2009, “
Efficient Uncertainty Quantification With the Polynomial Chaos Method for Stiff Systems
,”
Math. Comput. Simul.
0378-4754,
79
, pp.
3278
3295
.
38.
Bichon
,
B. J.
,
McFarland
,
J. M.
, and
Mahadevan
,
S.
, 2008, “
Using Bayesian Inference and Efficient Global Reliability Analysis to Explore Distribution Uncertainty
,”
49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Schaumburg, IL, Apr. 7–10.
39.
McDonald
,
M.
, and
Mahadevan
,
S.
, 2008, “
Uncertainty Quantification and Propagation for Multidisciplinary System Analysis
,”
12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Victoria, BC, Canada, Sep. 9–12.
40.
Zaman
,
K.
,
Rangavajhala
,
S.
,
McDonald
,
P. M.
, and
Mahadevan
,
S.
, “
A Probabilistic Approach for Representation of Interval Uncertainty
,”
Reliab. Eng. Syst. Saf.
0951-8320, in press.
41.
Kreinovich
,
V.
, 2004, “
Probabilities, Intervals, What Next? Optimization Problems Related to Extension of Interval Computations to Situations With Partial Information About Probabilities
,”
J. Global Optim.
0925-5001,
29
(
3
), pp.
265
280
.
42.
DeBrota
,
D. J.
,
Swain
,
J. J.
,
Roberts
,
S. D.
, and
Venkataraman
,
S.
, 1988, “
Input Modeling With the Johnson System of Distributions
,”
Proceedings of the 1988 Winter Simulation Conference
.
43.
Venkataraman
,
S.
, and
Wilson
,
J. R.
, 1987, “
Modeling Univariate Populations With Johnson’s Translation System-Description of the FITR1 Software
,” Research Memorandum, School of Industrial Engineering, Purdue University, West Lafayette, IN.
44.
Red-Horse
,
J. R.
, and
Benjamin
,
A. S.
, 2004, “
A Probabilistic Approach to Uncertainty Quantification With Limited Information
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
, pp.
183
190
.
45.
Ferson
,
S.
,
Joslyn
,
C. A.
,
Helton
,
J. C.
,
Oberkampf
,
W. L.
, and
Sentz
,
K.
, 2004, “
Summary From the Epistemic Uncertainty Workshop: Consensus Amid Diversity
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
, pp.
355
369
.
You do not currently have access to this content.