Creating highly articulated miniature structures requires assembling a large number of small parts. This is a very challenging task and increases cost of mechanical assemblies. Insert molding presents the possibility of creating a highly articulated structure in a single molding step. This can be accomplished by placing multiple metallic bearings in the mold and injecting plastic on top of them. In theory, this idea can generate a multi degree of freedom structures in just one processing step without requiring any post molding assembly operations. However, the polymer material has a tendency to shrink on top of the metal bearings and hence jam the joints. Hence, until now insert molding has not been used to create articulated structures. This paper presents a theoretical model for estimating the extent of joint jamming that occurs due to the shrinkage of the polymer on top of the metal bearings. The level of joint jamming is seen as the effective torque needed to overcome the friction in the revolute joints formed by insert molding. We then use this model to select the optimum design parameters which can be used to fabricate functional, highly articulating assemblies while meeting manufacturing constraints. Our analysis shows that the strength of weld-lines formed during the in-mold assembly process play a significant role in determining the minimum joint dimensions necessary for fabricating functional revolute joints. We have used the models and methods described in this paper to successfully fabricate the structure for a minimally invasive medical robot prototype with potential applications in neurosurgery. To the best of our knowledge, this is the first demonstration of building an articulated structure with multiple degrees of freedom using insert molding.

References

1.
Ananthanarayanan
,
A.
,
Gupta
,
S. K.
, and
Bruck
,
H. A.
, 2010, “
Characterization of a Reverse Molding Sequence at the Mesoscale for In-Mold Assembly of Revolute Joints
,”
Polym. Eng. Sci.
,
50
(
9
), pp.
1843
1852
.
2.
Moon
,
S. I.
,
Monson
,
L. L.
, and
Extrand
,
C. W.
, 2006, “
Insert-Molded Poly(Ether Imide)/Carbon Fiber Poly(Ether Ether Ketone) Bimaterial Composites: Fracture and Interfacial Analysis
,”
J. Appl. Polym. Sci.
,
102
(
3
), pp.
2362
2371
.
3.
Teh
,
N. J.
,
Conway
,
P. P.
,
Palmer
,
P. J.
,
Prosser
,
S.
, and
Kioul
,
A.
, 2000, “
Statistical Optimisation of Thermoplastic Injection Moulding Process for the Encapsulation of Electronic Subassembly
,”
J. Electron. Manuf.
,
10
, p.
171
179
.
4.
Webb
,
D. P.
,
Hutt
,
D. A.
,
Hopkinson
,
N.
,
Conway
,
P. P.
, and
Palmer
,
P. J.
, 2009, “
Packaging of Microfluidic Devices for Fluid Interconnection Using Thermoplastics
,”
J. Microelectromech. Syst.
,
18
(
2
), pp.
354
362
.
5.
Grujicic
,
M.
,
Sellappan
,
V.
,
Pandurangan
,
B.
,
Li
,
G.
,
Vahidi
,
A.
,
Seyr
,
N.
,
Erdmann
,
M.
, and
Holzleitner
,
J.
, 2008, “
Computational Analysis of Injection-Molding Residual-Stress Development in Direct-Adhesion Polymer-to-Metal Hybrid Body-in-White Components
,”
J. Mater. Process. Technol.
,
203
(
1–3
), pp.
19
36
.
6.
Ramani
,
K.
, and
Zhao
,
W.
, 1997, “
The Evolution of Residual Stresses in Thermoplastic Bonding to Metals
,”
Int. J. Adhes. Adhes.
,
17
(
4
), pp.
353
357
.
7.
Priyadarshi
,
A.
,
Gupta
,
S.
,
Gouker
,
R.
,
Krebs
,
F.
,
Shroeder
,
M.
, and
Warth
,
S.
, 2007, “
Manufacturing Multi-Material Articulated Plastic Products Using in-Mold Assembly
,”
Int. J. Adv. Manuf. Technol.
,
32
(
3–4
), pp.
350
365
.
8.
Ananthanarayanan
,
A.
,
Gupta
,
S.
, and
Bruck
,
H.
, 2008, “
Characterization and Control of Plastic Deformation in Premolded Components in In-Mold Assembled Mesoscale Revolute Joints Using Bi-Directional Filling Strategy
,”
All India Manufacturing Technology and Development Research
.
9.
Ananthanarayanan
,
A.
,
Gupta
,
S.
, and
Bruck
,
H.
, 2009, “
Characterization and Control of Pin Diameter During In-Mold Assembly of Mesoscale Revolute Joints
,”
North American Manufacturing Research Institute
, Vol.
37
.
10.
Ananthanarayanan
,
A.
,
Gupta
,
S.
, and
Bruck
,
H.
, 2009, “
Characterization and Control of Plastic Deformation in Mesoscale Premolded Components to Realize In-Mold Assembled Mesoscale Revolute Joints
,”
Polym. Eng. Sci.
,
49
(
2
), pp.
293
304
.
11.
Ananthanarayanan
,
A.
,
Thamire
,
C.
, and
Gupta
,
S.
, 2007, “
Investigation of Revolute Joint Clearances Created by an In-Mold Assembly Process
,”
International Symposium on Assembly and Manufacturing
,
IEEE
.
12.
Chen
,
Z. B.
,
Giacomin
,
A. J.
, and
Turng
,
L. S.
, 2006, “
Flash
,”
Polym. Eng. Sci.
,
46
(
3
), pp.
241
247
.
13.
Kwon
,
K.
,
Isayev
,
A. I.
, and
Kim
,
K. H.
, 2006, “
Theoretical and Experimental Studies of Anisotropic Shrinkage in Injection Moldings of Various Polyesters
,”
J. Appl. Polym. Sci.
,
102
(
4
), pp.
3526
3544
.
14.
Kwon
,
K.
,
Isayev
,
A. I.
,
Kim
,
K. H.
, and
van Sweden
,
C.
, 2006, “
Theoretical and Experimental Studies of Anisotropic Shrinkage in Injection Moldings of Semicrystalline Polymers
,”
Polym. Eng. Sci.
,
46
(
6
), pp.
712
728
.
15.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
, 2007,
Fundamentals of Machine Elements
, 2nd ed.,
McGraw-Hill Science/Engineering/Math
,
New York, NY
.
16.
Wu
,
C.
, and
Liang
,
W.
, 2005, “
Effects of Geometry and Injection-Molding Parameters on Weld-Line Strength
,”
Polym. Eng. Sci.
,
45
(
7
), pp.
1021
1030
.
17.
Selden
,
R.
, 1997, “
Effect of Processing on Weld-Line Strength in Five Thermoplastics
,”
Polym. Eng. Sci.
,
37
(
1
), pp.
205
218
.
18.
Gouker
,
R.
,
Gupta
,
S.
,
Bruck
,
H.
, and
Holzschuh
,
T.
, 2006, “
Manufacturing of Multi-Material Compliant Mechanisms Using Multi-Material Molding
,”
Int. J. Adv. Manuf. Technol.
,
30
(
11–12
), pp.
1049
1075
.
19.
Ananthanarayanan
,
A.
,
Gupta
,
S.
, and
Bruck
,
H.
, 2008, “
Mechanical Characterization of Cold Weld-Lines and Meld Lines in Mesoscopic Revolute Joints for Bioinspired Structures
,”
SEM Annual Conference and Exposition
.
20.
Davies
,
B.
, 2000, “
A Review of Robotics in Surgery
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
214
(
H1
), pp.
129
140
.
21.
Camarillo
,
D. B.
,
Krummel
,
T. M.
, and
Salisbury
,
J. K.
, 2004, “
Robotic Technology in Surgery: Past, Present, and Future
,”
Am. J. Surg.
,
188
(
4A
), pp.
2S
15S
.
22.
Louw
,
D. F.
,
Fielding
,
T.
,
McBeth
,
P. B.
,
Gregoris
,
D.
,
Newhook
,
P.
, and
Sutherland
,
G. R.
, 2004, “
Surgical Robotics: A Review and Neurosurgical Prototype Development
,”
Neurosurgery
,
54
(
3
), pp.
525
536
.
23.
Cutkosky
,
M. R.
, and
Kim
,
S.
, 2009, “
Design and Fabrication of Multi-Material Structures for Bioinspired Robots
,”
Philos. Trans. R. Soc. London
,
367
(
1894
), pp.
1799
1813
.
24.
Walsh
,
C. J.
,
Hanumara
,
N. C.
,
Slocum
,
A. H.
,
Shepard
,
J.-A.
, and
Gupta
,
R.
, 2008, “
A Patient-Mounted, Telerobotic Tool for CT-Guided Percutaneous Interventions
,”
J. Med. Devices
,
2
(
1
), p.
011007
.
25.
Bejgerowski
,
W.
,
Ananthanarayanan
,
A.
,
Mueller
,
D.
, and
Gupta
,
S. K.
, 2009, “
Integrated Product and Process Design for a Flapping Wing Drive Mechanism
,”
J. Mech. Des.
,
131
(
6
), p.
061006
.
26.
Bejgerowski
,
W.
,
Gupta
,
S. K.
, and
Bruck
,
H. A.
, 2009, “
A Systematic Approach for Designing Multifunctional Thermally Conducting Polymer Structures With Embedded Actuators
,”
J. Mech. Des.
,
131
(
11
),
111009
.
27.
Pappafotis
,
N.
,
Bejgerowski
,
W.
,
Gullapalli
,
R.
,
Simard
,
J.
,
Gupta
,
S.
, and
Desai
,
J.
, 2008, “
Towards Design and Fabrication of a Miniature MRI-Compatible Robot for Applications in Neurosurgery
,”
ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
(IDETC/CIE).
You do not currently have access to this content.