This paper proposes a new tooling system and performs an optimum design on it to minimize the amount of thinning during a forming process of aluminum beverage can end shells. Numerical simulations of the shell forming process and structural performance of the shell under internal pressure have been performed. Influences of the upmost surface profiles and initial positions of the tool in the new tooling system on the shell forming quality have been investigated, and a structural optimization method based on the numerical simulations has been then applied to find optimum design points subject to constraints of the shell geometrical dimensions. A comparison shows that thinning of the shell formed by the proposed new tooling system can be reduced approximately 3.6% compared to a conventional tooling system. Optimization results of the new tooling system show that the amount of thinning can be reduced almost 4%. It is also confirmed that the buckle pressure resistance of the shell is improved 5.5%. The new tooling system may reduce the amount of thinning; hence, may improve the structural performance of the can and may save metal.

References

References
1.
Hoon
,
H.
, and
Kim
,
S.
, 2001, “
Optimum Process Design in Sheet-Metal Forming With Finite Element Analysis
,”
ASME J. Eng. Mater. Technol.
,
123
(
4
), pp.
476
481
.
2.
Ohata
,
T.
,
Nakamura
,
Y.
,
Katayama
,
T.
, and
Nakamachi
,
E.
, 2003, “
Development of Optimum Process Design System for Sheet Fabrication Using Response Surface Method
,”
J. Mater. Process. Technol.
,
143–144
, pp.
667
672
.
3.
Nishiyama
,
S.
, 2001, “
Development and Future Subjects of Aluminum Beverage Cans
,”
Packpia
,
2
, pp.
10
15
(in Japanese).
4.
Nishiyama
,
S.
, 2002, “
Aluminum Can Recycling in a Synthesized Closed-Loop
,”
Corros. Eng.
,
51
, pp.
381
394
.
5.
Nishiyama
,
S.
, and
Han
,
J.
, 2006, “
Applications of Structural Optimization Methods and Ergonomics in Designing Aluminum Beverage Cans and Bottles
,”
J. Jpn. Inst. Light Met.
,
56
(
9
), pp.
489
495
(in Japanese).
6.
Trageser
,
A. B.
, and
Dick
,
R. E.
, 1988, “
Aluminum Can Design Using Finite Element Methods
,”
Proceedings SME Can Manufacturing Technical Symposium
, Chicago.
7.
Biondich
,
S. C.
, and
Dick
,
R. E.
, 1990, “
A New Reformed Shell Forming Process
,”
Trans. NAMRI/SME
,
18
, pp.
33
40
.
8.
MacEwen
,
S. R.
,
Perrin
,
R.
,
Green
,
D.
,
Makinde
,
A.
, and
Neale
,
K.
, 1993, “
The Science of Modeling Can Forming and Performance
,”
Aluminum Alloys for Packaging
,
The Minerals, Metals & Materials Society
,
Warrendale
, pp.
85
101
.
9.
Hackworth
,
M. R.
, and
Henshaw
,
J. M.
, 2000, “
A Pressure Vessel Fracture Mechanics Study of the Aluminum Beverage Can
,”
Eng. Fract. Mech.
,
65
, pp.
525
539
.
10.
Reid
,
J. D.
,
Bielenberg
,
R. W.
, and
Coon
,
B. A.
, 2001, “
Indenting, Buckling and Piercing of Aluminum Beverage Cans
,”
Finite Elem. Anal. Design
,
37
, pp.
131
144
.
11.
Boers
,
S. H. A.
,
Schreurs
,
P. J. G.
, and
Geers
,
M. G. D.
, 2005, “
Operator-Split Damage-Plasticity Applied to Groove Forming in Food Can Lids
,”
Int. J. Solids Struct.
,
42
, pp.
4154
4178
.
12.
Folle
,
L. F.
,
Netto
,
S. E. S.
, and
Schaeffer
,
L.
, 2008, “
Analysis of the Manufacturing Process of Beverage Cans Using Aluminum Alloy
,”
J. Mater. Process. Technol.
,
205
, pp.
347
352
.
13.
Han
,
J.
,
Itoh
,
R.
,
Nishiyama
,
S.
, and
Yamazaki
,
K.
, 2005, “
Application of Structure Optimization Technique to Aluminum Beverage Bottle Design
,”
Struct. Multidiscip. Optim.
,
29
(
4
), pp.
304
311
.
14.
Han
,
J.
,
Yamazaki
,
K.
, and
Nishiyama
,
S.
, 2004, “
Optimization of the Crushing Characteristics of Triangulated Aluminum Beverage Cans
,”
Struct. Multidiscip. Optim.
,
28
(
1
), pp.
47
54
.
15.
Han
,
J.
,
Yamazaki
,
K.
,
Itoh
,
R.
, and
Nishiyama
,
S.
, 2006, “
Multi-Objective Optimization of a Two-Piece Aluminum Beverage Bottle Considering Tactile Sensation of Heat and Embossing Formability
,”
Struct. Multidiscip. Optim.
,
32
(
2
), pp.
141
151
.
16.
Han
,
J.
,
Nishiyama
,
S.
,
Yamazaki
,
K.
, and
Itoh
,
R.
, 2008, “
Ergonomic Design of Beverage Can Lift Tabs Based on Numerical Evaluations of Fingertip Discomfort
,”
Appl. Ergon.
,
39
(
2
), pp.
150
157
.
17.
Yamazaki
,
K.
,
Chihara
,
T.
,
Itoh
,
R.
,
Han
,
J.
, and
Nishiyama
,
S.
, 2007, “
Evaluation Method of Drinking Ease for Aluminum Beverage Bottles
,”
Proceedings ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2007)
, Las Vegas, NV, September 4–7, Paper No. DETC2007-35637.
18.
Yamazaki
,
K.
,
Itoh
,
R.
,
Watanabe
,
M.
,
Han
,
J.
, and
Nishiyama
,
S.
, 2007, “
Applications of Structural Optimization Techniques in Light Weighting of Aluminum Beverage Can Ends
,”
J. Food Eng.
,
81
, pp.
341
346
.
19.
Han
,
J.
,
Hasegawa
,
T.
,
Itoh
,
R.
,
Nishiyama
,
S.
, and
Yamazaki
,
K.
, 2009, “
Optimum Design of Dies and Forming Process for Aluminum Beverage Can Ends
,”
Proceedings of the 8th World Congress of Structural and Multidisciplinary Optimization (WCSMO8)
,
Lisbon, Portugal
, June 1–5, Paper No. 1461.
20.
Myeres
,
R. H.
, and
Montgomery
,
D. C.
, 1995,
Response Surface Methodology-Process and Product Optimization Using Designed Experiments
,
John Wiley & Sons
,
New York
.
21.
Wang
,
G. G.
, and
Shan
,
S.
, 2007, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
, pp.
370
380
.
22.
Yamazaki
,
K.
, and
Han
,
J.
, 1998, “
Maximization of the Crushing Energy Absorption of Tubes
,”
Struct. Optim.
16
, pp.
37
46
.
23.
Shih
,
H. C.
, and
Wilson
,
W. R. D.
, 1999, “
Effects of Contact Pressure and Strain on Friction in Sheet-Metal Forming
,”
Tribol. Trans.
,
42
(
1
), pp.
144
151
.
You do not currently have access to this content.