The high energy density actuation potential of shape memory alloy (SMA) wire is tempered by conservative design guidelines set to mitigate complex factors such as functional fatigue (shakedown). In addition to stroke loss, shakedown causes practical problems of interface position drift between the system and the SMA wire under higher stress levels if the wire does not undergo a pre-installation shakedown procedure. Constraining actuation strain eliminates interface position drift and has been reported to reduce shakedown as well as increase fatigue life. One approach to limit actuation strain is using a mechanical strain limiter, which sets a fixed Martensite strain position—useful for the development of in-device shakedown procedures, which eliminates time-consuming pre-installation shakedown procedures. This paper presents a novel conglomerate stabilization curve design method for SMA wire actuators, which accounts for shakedown with and without the use of mechanical strain limiters to enable higher stress designs to maximize actuator performance. Shakedown experimental data including the effect of strain limiters along with stroke and work density contours form the basis for this new design method. For each independent mechanical strain limiter, the maximum of the individual postshakedown Austenite curves at a range of applied stress are combined into a conglomerate stabilization design curve. These curves over a set of mechanical strain limiters including the zero set provide steady-state performance prediction for SMA actuation, effectively decoupling the shakedown material performance from design variables that affect the shakedown. The use and benefits of the conglomerate stabilization curve design method are demonstrated with a common constant force actuator design example, which was validated in hardware on a heavy duty latch device. This new design method, which accounts for shakedown, supports design of SMA actuators at higher stresses with more economical use of material/power and enables the utilization of strain limiters for cost-saving in-device shakedown procedures.

References

1.
Kudva
,
J. N.
, 2004, “
Overview of the DARPA Smart Wing Project
,”
J. Intell. Mater. Syst. Struct.
,
15
(
4
), pp.
261
267
.
2.
Mabe
,
J. H.
,
Calkins
,
F. T.
, and
Ruggeri
,
R. T.
, 2007,
Full-Scale Flight Tests of Aircraft Morphing Structures Using SMA Actuators
,
Y.
Matsuzaki
,
M.
Ahmadian
, and
D. J.
Leo
, eds.,
SPIE
,
San Diego, CA
, Vol.
6525
, pp.
65251C
-
12
.
3.
Pollard
,
E. L.
, and
Jenkins
,
C. H. M.
, 2007, “
Shape Memory Alloy Deployment of Membrane Mirrors for Spaceborne Telescopes
,”
J. Spacecr. Rockets
,
44
(
1
), pp.
109
120
.
4.
Williams
,
E. A.
, and
Elahinia
,
M. H.
, 2006,
Design of a Two Degree of Freedom Shape Memory Alloy Actuator for Mirror Positioning
,
Y.
Matsuzaki
, ed.,
SPIE
,
San Diego, CA
, Vol.
6173
, pp.
617304
8
.
5.
Bellini
,
A.
,
Colli
,
M.
, and
Dragoni
,
E.
, 2009, “
Mechatronic Design of a Shape Memory Alloy Actuator for Automotive Tumble Flaps: A Case Study
,”
Ind. Electron., IEEE Trans.
,
56
(
7
), pp.
2644
2656
.
6.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
, and
You
,
Z.
, 2006, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng., A
,
419
(
1–2
), pp.
131
137
.
7.
Lan
,
C.
, and
Yang
,
Y.
, 2009, “
A Computational Design Method for a Shape Memory Alloy Wire Actuated Compliant Finger
,”
ASME J. Mech. Des.
,
131
(
2
),
021009
.
8.
Sugawara
,
T.
,
Hirota
,
K.
, and
Watanabe
,
M.
, 2006, “
Shape Memory Thin Film Actuator for Holding a Fine Blood Vessel
,”
Sens. Actuators, A
,
130–131
, pp.
461
467
.
9.
Utter
,
B.
,
Luntz
,
J.
, and
Brei
,
D.
, 2009,
Design and Operation of a Fully Implantable SMA Actuated Implant for Correcting Short Bowel Syndrome
,
M.
Ahmadian
and
M. N.
Ghasemi-Nejhad
, eds.,
SPIE
,
San Diego, CA,
Vol.
7288
, pp.
72881A
-13-72881A-
13
.
10.
Chopra
,
I.
, 2002, “
Review of State of Art of Smart Structures and Integrated Systems
,”
AIAA J.
,
40
(
11
), pp.
2145
2187
.
11.
Cho
,
K.-J.
, and
Asada
,
H.
, 2005, “
Multi-Axis SMA Actuator Array for Driving Anthropomorphic Robot Hand
,”
ICRA
, pp.
1356
1361
.
12.
Barnes
,
B. M.
,
Brei
,
D. E.
, and
Luntz
,
J. E.
, 2008,
Shape Memory Alloy Resetable Spring Lift for Pedestrian Protection
,
L. P.
Davis
,
B. K.
Henderson
, and
M. B.
McMickell
, eds.,
SPIE
,
San Diego, CA,
Vol.
6930
, pp.
693005
-
13
.
13.
Brinson
,
L. C.
, 1993, “
One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation With Non-Constant Material Functions and Redefined Martensite Internal Variable
,”
J. Intell. Mater. Syst. Struct.
,
4
(
2
), pp.
229
242
.
14.
Shaw
,
J. A.
, 2002, “
A Thermomechanical Model for a 1-D Shape Memory Alloy Wire With Propagating Instabilities
,”
Int. J. Solids Struct.
,
39
(
5
), pp.
1275
1305
.
15.
Webb
,
G. V.
,
Wilson
,
L. N.
, and
Lagoudas
,
D. C.
, 1999,
Control of SMA Actuators in Dynamic Environments
,
V. V.
Varadan
, ed.,
SPIE
,
Newport Beach, CA,
Vol.
3667
, pp.
278
289
.
16.
Fu
,
Y.
,
Du
,
H.
, and
Huang
,
W.
, 2004, “
TiNi-Based Thin Films in MEMS Applications: A Review
,”
Sens. Actuators A
,
112
(
2–3
), pp.
395
408
.
17.
Barnes
,
B.
,
Brei
,
D.
, and
Luntz
,
J.
, 2006,
Panel Deployment Using Ultrafast SMA Latches
,
ASME IMECE Chicago
,
Illinois
, pp.
273
280
.
18.
Pathak
,
A.
,
Aubuchon
,
J.
, and
Brei
,
D.
, 2008,
Carbon Nanotube (CNT) Fins for the Enhanced Cooling of Shape Memory Alloy Wire
,
SPIE
,
San Diego, CA
. Vol.
6929
, pp.
69291K
.
19.
Grummon
,
D. S.
,
Shaw
,
J. A.
, and
Foltz
,
J.
, 2006, “
Fabrication of Cellular Shape Memory Alloy Materials by Reactive Eutectic Brazing using Niobium
,”
Mater. Sci. Eng., A
,
438–440
, pp.
1113
1118
.
20.
Redmond
,
J. A.
,
Brei
,
D.
, and
Luntz
,
J.
, 2008,
Behavioral Model and Experimental Validation for a Spool-Packaged Shape Memory Alloy Actuator
,
L. P.
Davis
,
B. K.
Henderson
, and
M. B.
McMickell
, eds.,
SPIE
,
San Diego, CA
, Vol.
6930
, pp.
693004
-
13
.
21.
Boyd
,
J. G.
, and
Lagoudas
,
D. C.
, 1994,
Thermodynamical Constitutive Model for the Shape Memory Effect Due to Transformation and Reorientation
,
V. K.
Varadan
, ed.,
SPIE
,
Orlando, FL
Vol.
2189
, pp.
276
288
.
22.
Erbstoeszer
,
B.
,
Armstrong
,
B.
, and
Taya
,
M.
, 2000, “
Stabilization of the Shape Memory Effect in NiTi: An Experimental Investigation
,”
Scr. Mater.
,
42
(
12
), pp.
1145
1150
.
23.
Sun
,
H.
,
Pathak
,
A.
, and
Luntz
,
J.
, 2008,
Stabilizing Shape Memory Alloy Actuator Performance Through Cyclic Shakedown: An Empirical Study
,
L. P.
Davis
,
B. K.
Henderson
, and
M. B.
McMickell
, eds.,
SPIE
,
San Diego, CA,
Vol.
6930
, pp.
69300Q
-11-69300Q-
11
.
24.
Liu
,
Y.
, and
McCormick
,
P. G.
, 1990, “
Factors Influencing the Development of Two-Way Shape Memory in NiTi
,”
Acta Metall. Mater.
,
38
(7), pp.
1321
1326
.
25.
Tanaka
,
K.
,
Nishimura
,
F.
, and
Hayashi
,
T.
, 1995, “
Phenomenological Analysis on Subloops and Cyclic Behavior in Shape Memory Alloys Under Mechanical and/or Thermal Loads
,”
Mech. Mater.
,
19
(
4
), pp.
281
292
.
26.
Otsuka
,
K.
, and
Wayman
,
C. M.
, 1998,
Shape Memory Materials
,
Cambridge University Press
,
Cambridge, New York
.
27.
Clark
,
C. R.
, and
Marcelli
,
D. P.
, 1999,
Shape Memory Alloy Actuator Fatigue Properties
,
M. R.
Wuttig
, ed.,
SPIE
,
Newport Beach, CA,
Vol.
3675
, pp.
311
320
.
28.
Lagoudas
,
D. C.
, and
Bo
,
Z.
, 1999, “
Thermomechanical Modeling of Polycrystalline SMAs Under Cyclic Loading, Part II: Material Characterization and Experimental Results for a Stable Transformation Cycle
,”
Int. J. Eng. Sci.
,
37
(
9
), pp.
1141
1173
.
29.
James
,
H. Mabe
,
Robert
,
T. Ruggeri
,
Ed Rosenzweig
,
and
Chin-Jye
,
M. Yu
, 2004, “
NiTinol performance characterization and rotary actuator design
”,
Proc. SPIE
5388, pp.
95
109
.
30.
Feng
,
X.
, and
Sun
,
Q.
, 2007, “
Shakedown Analysis of Shape Memory Alloy Structures
,”
Int. J. Plast.
,
23
(
2
), pp.
183
206
.
31.
Churchill
,
C. B.
, and
Shaw
,
J. A.
, 2008,
Shakedown Response of Conditioned Shape Memory Alloy Wire
,
M. J.
Dapino
and
Z.
Ounaies
, eds.,
SPIE
,
San Diego, CA,
Vol.
6929
, pp.
69291F
-12-69291F-
12
.
32.
Bertacchini
,
O. W.
,
Lagoudas
,
D. C.
, and
Calkins
,
F. T.
, 2008,
Thermomechanical Cyclic Loading and Fatigue Life Characterization of Nickel Rich NiTi Shape-Memory Alloy Actuators
,
M. J.
Dapino
and
Z.
Ounaies
, eds.,
SPIE
,
San Diego, CA,
Vol.
6929
, pp.
692916
11
.
33.
Churchill
,
C. B.
, and
Shaw
,
J. A.
, 2009,
Thermo-Electro-Mechanical Shakedown Response of Conditioned Shape Memory Alloy Wires
,
ASME SMASIS Oxnard
,
CA,
pp.
137
148
.
34.
Bertacchini
,
O. W.
,
Lagoudas
,
D. C.
, and
Patoor
,
E.
, 2009, “
Thermomechanical Transformation Fatigue of TiNiCu SMA Actuators Under a Corrosive Environment—Part I: Experimental Results
,”
Int. J. Fatigue
,
31
(
10
), pp.
1571
1578
.
35.
Nayan
,
N.
,
Buravalla
,
V.
, and
Ramamurty
,
U.
, 2009, “
Effect of Mechanical Cycling on the Stress–Strain Response of a Martensitic Nitinol Shape Memory Alloy
,”
Mater. Sci. Eng., A
,
525
(
1–2
), pp.
60
67
.
36.
Bo
,
Z.
, and
Lagoudas
,
D. C.
, 1999, “
Thermomechanical Modeling of Polycrystalline SMAs Under Cyclic Loading, Part III: Evolution of Plastic Strains and Two-Way Shape Memory Effect
,”
Int. J. Eng. Sci.
,
37
(
9
), pp.
1175
1203
.
37.
Tobushi
,
H.
,
Okumura
,
K.
, and
Endo
,
M.
, 2002,
Deformation Behavior of TiNi Shape Memory Alloy Under Strain- or Stress-Controlled Conditions
,
C. S.
Lynch
, ed.,
SPIE
,
San Diego, CA,
Vol.
4699
, pp.
374
385
.
38.
Yoon
,
S. H.
, and
Yeo
,
D. J.
, 2008, “
Experimental Investigation of Thermo-Mechanical Behaviors in Ni—Ti Shape Memory Alloy
,”
J. Intell. Mater. Syst. Struct.
,
19
(
3
), pp.
283
289
.
39.
Lagoudas
,
D. C.
,
Li
,
C.
, and
Miller
,
D. A.
, 2000,
Thermomechanical Transformation Fatigue of SMA Actuators
,
C. S.
Lynch
, ed.,
SPIE
,
Newport Beach, CA,
Vol.
3992
, pp.
420
429
.
40.
Bertacchini
,
O. W.
,
Schick
,
J.
, and
Lagoudas
,
D. C.
, 2009,
Parametric Study and Characterization of the Isobaric Thermomechanical Transformation Fatigue of Nickel-Rich NiTi SMA Actuators
,
Z.
Ounaies
and
J.
Li
, eds.,
SPIE
,
San Diego, CA,
Vol.
7289
, pp.
72890P
-
12
.
41.
Dynalloy Inc., “Technical and Design Data for FLEXINOL Wire,” http://www.dynalloy.com/TechData.htmlhttp://www.dynalloy.com/TechData.html
42.
Pathak
,
A.
,
Brei
,
D.
, and
Luntz
,
J.
, 2008,
Dynamic Characterization and Single-Frequency Cancellation Performance of SMASH (SMA Actuated Stabilizing Handgrip)
,
D. K.
Lindner
, ed.,
SPIE
,
San Diego, CA,
Vol.
6926
, pp.
692602
12
.
43.
Miyazaki
,
S.
,
Mizukoshi
,
K.
, and
Ueki
,
T.
, 1999, “
Fatigue Life of Ti-50 at.% Ni and Ti-40Ni-10Cu (at.%) Shape Memory Alloy Wires
,”
Mater. Sci. Eng., A
,
273–275
, pp.
658
663
.
44.
Wilkes
,
K.
,
Liaw
,
P.
, and
Wilkes
,
K.
, 2000, “
The Fatigue Behavior of Shape-Memory Alloys
,”
JOM J. Miner., Met. Mater. Soc.
,
52
(
10
), pp.
45
51
.
45.
Tobushi
,
H.
,
Nakahara
,
T.
, and
Shimeno
,
Y.
, 2000, “
Low-Cycle Fatigue of TiNi Shape Memory Alloy and Formulation of Fatigue Life
,”
ASME J. Eng. Mater. Technol.
,
122
(
2
), pp.
186
191
.
46.
Furuichi
,
Y.
,
Tobushi
,
H.
, and
Ikawa
,
T.
, 2003, “
Fatigue Properties of a TiNi Shape-Memory Alloy Wire Subjected to Bending With Various Strain Ratios
,”
Proc. Inst. Mech. Eng., Part L
,
217
(
2
), pp.
93
99
.
47.
Cheung
,
G. S. P.
, and
Darvell
,
B. W.
, 2007, “
Fatigue Testing of a NiTi Rotary Instrument. Part 1: Strain–life Relationship
,”
Int. Endod. J.
,
40
(
8
), pp.
612
618
.
48.
Shaw
,
J. A.
, and
Churchill
,
C. B.
, 2009, “
A Reduced-Order Thermomechanical Model and Analytical Solution for Uniaxial Shape Memory Alloy Wire Actuators
,”
Smart Mater. Struct.
,
18
(
6
),
065001
.
49.
Liang
,
C.
, and
Rogers
,
C. A.
, 1997, “
Design of Shape Memory Alloy Actuators
,”
J. Intell. Mater. Syst. Struct.
,
8
(
4
), pp.
303
313
.
50.
Duerig
,
T. W.
, and
Melton
,
K. N.
, 1989, “
Designing With the Shape Memory Effect
,”
Mater. Res. Soc. Symp. Proc.
,
9
, pp.
581
597
.
51.
Churchill
,
C. B.
, 2010, “
Experimental Techniques for Characterizing the Thermo-Electro-Mechanical Shakedown Response of SMA Wires and Tubes
,” Ph.D. thesis, University of Michigan, Ann Arbor.
52.
Pathak
,
A.
, 2010, “
The Development of an Antagonistic SMA Actuation Technology for the Active Cancellation of Human Tremor
,” Ph.D. thesis, University of Michigan, Ann Arbor.
53.
Arabia
,
J.
,
Joseph
,
F.
,
Bellew
,
C. L.
, and
Martin
,
I.
, 1998, “
Vehicle Door Latch
,” U. S. Patent No. 5803515.
54.
Aubry
,
M. E.
,
Rogers
,
J.
,
Walker
,
L.
, and
Hlavaty
,
D. G.
, 1998, “
Door Latch Locking Actuator Assembly
,” U. S. Patent No. 5715713.
55.
Wittman
,
L. L.
, and
Jensen
,
L. B.
, 1984, “
Heavy Duty Crane
,” U. S. Patent No. 4483448.
You do not currently have access to this content.