The robust design of horizontal axis wind turbines, including both parameter design and tolerance design, is presented. A simple way of designing robust horizontal axis wind turbine systems under realistic conditions is outlined with multiple design parameters (variables), multiple objectives, and multiple constraints simultaneously by using the traditional Taguchi method and its extensions. The performance of the turbines is predicted using the axial momentum theory and the blade element momentum theory. In the parameter design stage, the energy output of the turbine is maximized using the Taguchi method and an extended penalty-based Taguchi method is proposed to solve constrained parameter design problems. The results of the unconstrained and constrained parameter design problems, in terms of the objective function and constraints are compared. Using an appropriate set of tolerance settings of the parameters, the tolerance design problem is formulated so as to yield an economical design, while ensuring a minimal variability in the performance of the wind turbine. The resulting multi-objective tolerance design problem is solved using the traditional Taguchi method. The present work provides a simple and economical approach for the robust optimal design of horizontal axis wind turbines.

References

References
1.
REN21, Renewables 2010 Global Status Report, Renewable Energy Policy Network for the 21st Century, Paris, France.
2.
Negm
,
H. M.
, and
Maalawi
,
K. Y.
, 2000, “
Structural Design Optimization of Wind Turbine Towers
,”
Comput. Struct.
,
74
(
6
), pp.
649
666
.
3.
Jureczko
,
M.
,
Pawlak
,
M.
, and
Męzyk
,
A.
, 2005, “
Optimisation of Wind Turbine Blades
,”
J. Mater. Process. Technol.
,
167
, pp.
463
471
.
4.
Martin
,
K.
, 2006, “
Site Specific Optimization of Rotor/Generator Sizing of Wind Turbines
,” M.S. thesis, Georgia Institute of Technology, Atlanta, GA.
5.
Thumthae
,
C.
, and
Chitsomboon
,
T.
, 2009, “
Optimal Angle of Attack for Untwisted Blade Wind Turbine
,”
Renewable Energy
,
34
(
5
), pp.
1279
1284
.
6.
Lanzafame
,
R.
, and
Messina
,
M.
, 2009, “
Optimal Wind Turbine Design to Maximize Energy Production
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
2
), pp.
93
101
.
7.
Kackar
,
R.
, 1985, “
Off-Line Quality Control, Parameter Design, and the Taguchi Method
,”
J. Quality Technol.
,
17
(
4
), pp.
176
188
.
8.
Ku
,
K.
,
Rao
,
S. S.
, and
Li
,
C.
, 1998, “
Taguchi-Aided Search Method for Design Optimization of Engineering Systems
,”
Eng. Optimiz.
,
30
, pp.
1
23
.
9.
Lu
,
S. M.
,
Li
,
Y. C. M.
, and
Tang
,
J. C.
, 2003, “
Optimum Design of Natural-Circulation Solar-Water-Heater by the Taguchi Method
,”
Energy
,
28
, pp.
741
750
.
10.
Chiang
,
K. T.
, 2005, “
Optimization of the Design Parameters of Parallel-Plain Fin Heat Sink Module Cooling Phenomenon Based on the Taguchi Method
,”
Int. Commun. Heat Mass Transfer
,
32
, pp.
1193
1201
.
11.
Kim
,
J. H.
,
Sin
,
H. C.
,
Kang.
,
B. J.
, and
Kim
,
N. W.
, 2006, “
Characteristic Study of Bushing Compliance in Consideration of Stresses in a Vehicle Suspension System by the Taguchi Method
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
220
, pp.
1383
1399
.
12.
Wu
,
H. W.
, and
Gu
,
H. W.
, 2010, “
Analysis of Operating Parameters Considering Flow Orientation for the Performance of a PEM Fuel Cell Using the Taguchi Method
,”
J. Power Sources
,
195
(
11
), pp.
3621
3630
.
13.
Jung
,
B.
,
Jang
,
K.
,
Min
,
B.
,
Lee
,
S.
, and
Seok
,
J.
, 2009, “
Parameter Optimization for Finishing Hard Materials With Magnetorheological Fluid Using the Penalized Multi-Response Taguchi Method
,”
Proc. Inst. Mech. Eng., Part B
,
223
(
8
), pp.
955
968
.
14.
Otto
,
K. N.
, and
Antonsson
,
E. K.
, 1993, “
Extensions to the Taguchi Method of Product Design
,”
ASME J. Mech. Des.
,
115
, pp.
5
13
.
15.
Kunjur
,
A.
, and
Krishnamurty
,
S.
, 1997, “
A Robust Multi-Criteria Optimization Approach
,”
Mech. Mach. Theory
,
32
, pp.
797
810
.
16.
Wilson
,
R.
, and
Lissaman
,
P.
, 1974, “
Applied Aerodynamics of Wind Power of Wind Power Machines
,” National Science Foundation Report, Oregon State University, Grant No. GI-41840.
17.
Glauert
,
H.
, 1935,
Airplane Propellers, In Division L of Aerodynamic Theory
,
W. F.
Durand
, ed.,
Springer-Verlag
,
Berlin, Germany
, reprinted by Peter Smith, Glouster, MA, 1976.
18.
Maalawi
,
K. Y.
, and
Badawy
,
M. T. S.
, 2001, “
A Direct Method for Evaluating Performance of Horizontal Axis Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
5
, pp.
175
190
.
19.
Maalawi
,
K. Y.
, and
Badr
,
M. A.
, 2003, “
A Practical Approach for Selecting Optimum Wind Rotor
,”
Renewable Energy
,
28
, pp.
803
822
.
20.
Duquette
,
M. M.
, and
Visser
,
K. D.
, 2003, “
Numerical Implications of Solidity and Blade Number on Rotor Performance of Horizontal-Axis Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
425
432
.
21.
Lanzafame
,
R.
, and
Messina
,
M.
, 2007, “
Fluid Dynamic Wind Turbine Design: Critical Analysis, Optimization and Application of BEM Theory
,”
Renewable Energy
,
32
, pp.
2291
2305
.
22.
Mathew
,
S.
,
Wind Energy
(
Springer-Verlag
,
Berlin
, 2006).
23.
Bhadra
,
S. N.
,
Kastha
,
D.
, and
Banerjee
,
S.
,
Wind Electrical Systems
(
Oxford University Press
,
New Delhi
, 2005).
24.
Manwell
,
J. F.
,
McGowan
,
J. G.
, and
Rogers
,
A. L.
,
Wind Energy Explained
(
Wiley
,
Chichester, England
, 2003).
25.
Shen
,
W. Z.
,
Mikkelsen
,
R.
, and
Sorensen
,
J. N.
, 2005, “
Tip Loss Corrections for Wind Turbine Computations
,”
Wind Energy
,
8
, pp.
457
475
.
26.
Selig
,
M. S.
,
Guglielmo
,
J. J.
,
Broeren
,
A. P.
, and
Giguère
,
P.
, 1995,
Summary of Low-Speed Airfoil Data
,
SoarTech Publications
,
Virginia Beach, VA
, Vol.
1
.
27.
Selig
,
M. S.
,
Lyon
,
C. A.
,
Giguère
,
P.
,
Ninham
,
C. N.
, and
Guglielmo
,
J. J.
, 1996,
Summary of Low-Speed Airfoil Data
,
SoarTech Publications
,
Virginia Beach, VA
, Vol.
2
.
28.
Selig
,
M. S.
, and
McGranahan
,
B. D.
, 2004, “
Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines
,” National Renewable Energy Laboratory, NREL/SR-500-34515.
29.
Lyon
,
C. A.
,
Broeren
,
A. P.
,
Giguère
,
P.
,
Gopalarathnam
,
A.
, and
Selig
,
M. S.
, 1998,
Summary of Low-Speed Airfoil Data
,
SoarTech Publications
,
Virginia Beach, VA
, Vol.
3
.
30.
Drela
,
M.
, and
Youngren
,
H.
, 2001,
XFOIL 6.94 Users Guide
,
Department of Aero and Astro, MIT and Aerocraft, Inc.
,
Cambridge, MA
.
31.
Benini
,
E.
, and
Toffolo
,
A.
, 2002, “
Optimal Design of Horizontal-Axis Wind Turbines Using Blade-Element Theory and Evolutionary Computation
,”
ASME J. Sol. Energy Eng.
,
124
, pp.
357
363
.
32.
Gur
,
O.
, and
Rosen
,
A.
, 2008, “
Optimal Design of Horizontal Axis Wind Turbine Blades
,”
Proceedings of the 9th Biennial ASME Conference on Engineering Systems Design and Analysis
,
Haifa, Israel
, pp.
99
109
.
33.
Buhl
,
M. L.
, 2004,
WT_Perf User’s Guide
,
National Wind Technology Center, National Renewable Energy Laboratory
,
Golden, CO
.
34.
Justus
,
C. G.
,
Winds and Wind System Performance
(
Franklin Institute Press
,
Philadelphia, PA
, 1978).
35.
Lu
,
L.
,
Yang
,
H.
, and
Burnett
,
J.
, 2002,
Investigation on Wind Power on Hong Kong Islands—An Analysis of Wind Power and Wind Turbine Characteristics
,”
Renewable Energy
,
27
, pp.
1
12
.
36.
Johnson
,
G. L.
,
Wind Energy Systems
(
Prentice-Hall
,
New Jersey
, 1985).
37.
Lorenzen
,
T.
, and
Anderson
,
V.
,
Design of Experiments: A No-Name Approach
(
Marcel Dekker
,
New York
, 1993).
38.
Hau
,
E.
,
Langenbrinck
,
J.
, and
Paltz
,
W.
,
WEGA Large Turbines
(
Springer-Verlag
,
Berlin
, 1993).
39.
Hau
,
E.
,
Harrison
,
R.
,
Snel
,
H.
, and
Cockerill
,
T. T.
, 1996,
Conceptual Design and Costs of Large Wind Turbines
,
Proceedings of the EWEC
, Vol.
96
, pp.
128
131
.
40.
Harrison
,
R.
,
Hau
,
E.
, and
Snel
,
H.
,
Large Wind Turbines: Design and Economics
, (
Wiley
,
Chichester, England
, 2000).
41.
Brall
,
J. G.
ed., 1999,
Design for Manufacturability Handbook
, 2nd ed.,
McGraw-Hill
,
New York
.
42.
Creveling
,
C. M.
,
Tolerance Design: A Handbook for Developing Optimal Specifications
(
Addson-Wesley
,
Reading, MA
, 1997).
43.
Bolz
,
R. E.
, 1949, “
Design Considerations for Manufacturing Economy
,”
ASME Mech. Eng.
,
71
,
pp. 9
10
.
44.
Wisconsin Precision Casting Corporation, East Troy, WI 531201: www.wisconsinprecision.com/chart.pdfwww.wisconsinprecision.com/chart.pdf
45.
Lu
,
X. J.
,
Li
,
H. X.
, and
Chen
,
C. L. P.
, 2010, “
Variable Sensitivity-Based Deterministic Robust Design for Nonlinear System
,”
ASME J. Mech. Des.
,
132
(
6
),
064502
.
46.
Lu
,
X. J.
, and
Li
,
H. X.
, “
Perturbation Theory Based Robust Design for Model Uncertainty
,”
ASME J. Mech. Des.
,
131
(
11
),
111006
.
You do not currently have access to this content.