Energy harvesting devices capable of converting freely-available ambient energy into electrical energy have received significant attention recently. Ambient kinetic energy is particularly attractive for conversion since it is almost ubiquitous and easily accessible. Piezoelectric energy harvesting devices are promising due to their simple configuration and high conversion efficiency. This paper studies multifrequency structures for piezoelectric energy harvesting of ambient kinetic energy, inspired by fractal geometry. Identifying such structures that are simple and efficient is challenging. We propose four fractal-inspired structures and we examine them at both micro and macroscales. We calculate their frequency response up to 100 Hz with computational modeling, and we also examine the effect of the fractal geometry iteration level. We use a cantilever plate example as a reference to validate computational results against analytical ones. A quantitative criterion to assess the harvesting efficiency of the proposed structures is introduced using the bending strain associated with each mode shape. Results show that a large number of eigenfrequencies is obtained, evenly distributed below 100 Hz, particularly in the macroscale. In addition, the iteration level of the fractal geometry affects the number and distribution of eigenfrequencies in the range of interest. Comparison with a conventional batch of cantilevers of the same size as the proposed structures shows noticeable improvement in electric charge generation.

References

References
1.
Despesse
,
G.
,
Jager
,
T.
,
Chaillout
,
J. J.
,
Léger
,
J. M.
, and
Basrour
,
S.
, 2005, “
Design and Fabrication of a New System for Vibration Energy Harvesting
,”
Proc. Ph.D. Res. Microelectron. Electron.
, Vol.
1
, pp.
225
228
.
2.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
, 2008, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
,
17
, pp.
R175
R195
.
3.
Ferrari
,
M.
,
Ferrari
,
V.
,
Guizzetti
,
M.
,
Marioli
,
D.
, and
Taroni
,
A.
, 2008, “
Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems
,”
Sens. Actuators
,
142
, pp.
329
335
.
4.
Qi
,
S.
,
Shuttleworth
,
R.
, and
Oyadiji
,
S. O.
, 2009, “
Multiple Resonances Piezoelectric Energy Harvesting Generator
,”
Proceedings of SMASIS
,
CA
.
5.
Shen
,
D.
,
Choe
,
S. Y.
, and
Kim
,
D. J.
, 2007, “
Analysis of Piezoelectric Materials for Energy Harvesting Devices Under High-g Vibrations
,”
Jap. J. Appl. Phys.
,
46
(
10
), pp.
6755
6760
.
6.
Benasciutti
,
D.
,
Brusa
,
E.
,
Moro
,
L.
, and
Zelenika
,
S.
, 2008, “
Ottimizzazione di dispositivi piezoelettrici per accumulo di energia
,”
Proceedings of XXXVII AIAS Conference
,
Rome, Italy
.
7.
Song
,
H. J.
,
Choi
,
Y. T.
,
Wang
,
G.
, and
Wereley
,
N. M.
, “
Energy Harvesting Utilizing Single-Crystal PMN-PT Material and Application to a Self-Powered Accelerometer
,”
J. Mech. Des.
,
131
(
9
), p.
091008
.
8.
Shahruz
,
S. M.
, 2006, “
Design of Mechanical Band-Pass Filters for Energy Scavenging: Multi-Degree-of-Freedom Models
,”
Mechatronics
,
16
, pp.
523
531
.
9.
Mandelbrot
,
B. B.
, 1983, “The Fractal Geometry of Nature,” W. H. Freeman, San Francisco.
10.
Barnsley
,
M. F.
,
Fractals Everywhere
(
Academic Press
,
MA
, 1993).
11.
Werner
,
D. H.
, and
Ganguly
,
S.
, 2003, “
An Overview of Fractal Antenna Engineering Research
,”
IEEE Antennas Wireless Propag. Lett.
,
45
(
1
), pp.
38
57
.
12.
Best
,
S. R.
, 2003, “
A Comparison of the Resonant Properties of Small Space-Filling Antennas
,”
IEEE Antennas Wireless Propag. Lett.
,
2
, pp.
197
200
.
13.
Da Costa
,
K. Q.
,
Dimitriev
,
V.
, and
Rodrigues
,
C.
, 2005, “
Fractal Spiral Monopoles: Theoretical Analysis and Bandwidth Optimization
,” SBMO/IEE, MTT-S, IMOC, Brasilia-DF, Brasil.
14.
Lee
,
Y. C.
,
Sun
,
J. S.
, and
Lin
,
S. C.
, 2007, “
Wideband Fractal Printed Monopole Antennas
,”
Microwave Opt. Technol. Lett.
,
49
(
6
), pp.
1267
1272
.
15.
Ozbakis
,
B.
, and
Kustepeli
,
A.
, 2008, “
The Resonant Behavior of the Fibonacci Fractal Tree Antennas
,”
Microwave Opt. Technol. Lett.
,
50
(
4
), pp.
1046
1050
.
16.
Guo
,
R.
,
Cheng
,
X.
, and
Huang
,
K.
, 2009, “
A Novel Wideband Microstrip Fractal Antenna Based on the Fractal Binary Tree
,”
Electromagnetics
,
29
(
4
), pp.
283
290
.
17.
Xue
,
H.
,
Hu
,
Y.
, and
Wang
,
Q. M.
, 2008, “
Broadband Piezoelectric Energy Harvesting Devices Using Multiple Bimorphs With Different Operating Frequencies
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
55
(
9
), pp.
2104
2108
.
18.
Hocheng
,
H.
,
Kao
,
K. S.
, and
Fang
,
W.
, 2004, “
Fatigue Life of a Microcantilever Beam in Bending
,”
J. Vac. Sci. Technol. B
,
22
(
6
), pp.
3143
3146
.
19.
Choudhury
,
A.
,
Hesketh
,
P.
,
Thundat
,
T.
, and
Hu
,
Z.
, 2007, “
A Piezoresistive Microcantilever Array for Surface Stress Measurement: Curvature Model and Fabrication
,”
J. Micromech. Microeng.
,
17
, pp.
2065
2076
.
20.
Liu
,
H. K.
,
Pan
,
C. H.
, and
Liu
,
P. P.
, 2008, “
Dimension Effect on Mechanical Behavior of Slicon Micro-Cantilever beams
,”
Measurement
,
41
, pp.
885
895
.
21.
Simulia ABAQUS 6.9, Users’ Manual (HKS Inc., Providence, RI, 2009).
22.
Young
,
W. C.
, and
Budynas
,
R. G.
, 1989,
Roark Formulas for Stress and Strain
, 7th ed.,
McGraw-Hill
,
New York
.
23.
Moheimani
,
S. O. R.
, and
Fleming
,
A. J.
,
Piezoelectric Transducers for Vibration Control and Damping
(
Springer
,
Germany
, 2008).
25.
Krodkiewski
,
J. M.
, 2008, 436-431 Mechanics 4, Unit 2, Mechanical Vibrations, Lecture Notes, http://www.mech.eng.unimelb.edu.au/dynamics/14lec.pdfhttp://www.mech.eng.unimelb.edu.au/dynamics/14lec.pdf.
26.
Kelly
,
S. G.
, 1993,
Fundamentals of Mechanical Vibrations
,
S.
Graham Kelly
,
McGraw-Hill International edition
,
New York
.
You do not currently have access to this content.