We seek to elicit individual design preferences through human-computer interaction. During an iteration of the interactive session, the computer queries the subject by presenting a set of designs from which the subject must make a choice. The computer uses this choice feedback and creates the next set of designs using knowledge accumulated from previous choices. Under the hypothesis that human responses are deterministic, we discuss how query schemes in the elicitation task can be viewed mathematically as learning or optimization algorithms. Two query schemes are defined. Query type 1 considers the subject’s binary choices as definite preferences, i.e., only preferred designs are chosen, while others are skipped; query type 2 treats choices as comparisons among a set, i.e., preferred designs are chosen relative to those in the current set but may be dropped in future iterations. We show that query type 1 can be considered as an active learning problem, while type 2 as a “black-box” optimization problem. This paper concentrates on query type 2. Two algorithms based on support vector machine and efficient global optimization search are presented and discussed. Early user tests for vehicle exterior styling preference elicitation are also presented.

References

References
1.
Wassenaar
,
H.
,
Chen
,
W.
,
Cheng
,
J.
, and
Sudjianto
,
A.
, 2005, “
Enhancing Discrete Choice Demand Modeling for Decision-Based Design
,”
ASME J. Mech. Des.
,
127
, p.
514
.
2.
Kumar
,
D.
,
Hoyle
,
C.
,
Chen
,
W.
,
Wang
,
N.
,
Gomez-Levi
,
G.
, and
Koppelman
,
F.
, 2007, “
Incorporating Customer Preferences and Market Trends in Vehicle Package Design
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Paper No. DETC2007-35520.
3.
Li
,
H.
, and
Azarm
,
S.
, 2000, “
Product Design Selection Under Uncertainty and With Competitive Advantage
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
411
418
.
4.
Michalek
,
J.
,
Feinberg
,
F.
, and
Papalambros
,
P.
, 2005, “
Linking Marketing and Engineering Product Design Decisions via Analytical Target Cascading
,”
J. Prod. Innovation Manage.
,
22
(
1
), pp.
42
62
.
5.
Kuhfeld
,
W.
,
Tobias
,
R.
, and
Garratt
,
M.
, 1994, “
Efficient Experimental Design With Marketing Research Applications
,”
J. Mark. Res.
,
31
(
4
), pp.
545
557
.
6.
Hoyle
,
C.
,
Chen
,
W.
,
Ankenman
,
B.
and
Wang
,
N.
, 2009, “
Optimal Experimental Design of Human Appraisals for Modeling Consumer Preferences in Engineering Design
,”
ASME J. Mech. Des.
,
131
(
7
), pp.
071008.1
071008.9
.
7.
Toubia
,
O.
,
Hauser
,
J.
, and
Simester
,
D.
, 2004, “
Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis
,”
J. Mark. Res.
,
41
(
1
), pp.
116
131
.
8.
Abernethy
,
J.
,
Evgeniou
,
T.
,
Toubia
,
O.
, and
Vert
,
J.
, 2007, “
Eliciting Consumer Preferences Using Robust Adaptive Choice Questionnaires
,”
IEEE Trans. Knowl. Data Eng.
,
20
(
2
), pp.
145
155
.
9.
Netzer
,
O.
,
Toubia
,
O.
,
Bradlow
,
E.
,
Dahan
,
E.
,
Evgeniou
,
T.
,
Feinberg
,
F.
,
Feit
,
E.
,
Hui
,
S.
,
Johnson
,
J.
,
Liechty
,
J.
,
Orlin
,
J.
, and
Rao
,
V.
, 2008, “
Beyond Conjoint Analysis: Advances in Preference Measurement
,”
Mark. Lett.
,
19
(
3
), pp.
337
354
.
10.
Takagi
,
H.
, 2001, “
Interactive Evolutionary Computation: Fusion of the Capabilities of EC Optimization and Human Evaluation
,”
Proc. IEEE
,
89
(
9
), pp.
1275
1296
.
11.
Tokui
,
N.
, and
Iba
,
H.
, 2000, “
Music Composition With Interactive Evolutionary Computation
,”
Proceedings of the third International Conference on Generative Art
.
12.
Johanson
,
B.
, and
Poli
,
R.
, 1998, “
Gp-Music: An Interactive Genetic Programming System for Music Generation With Automated Fitness Raters
,”
Genet. Program.
, pp.
181
186
.
13.
Kim
,
H.
, and
Cho
,
S.
, 2000, “
Application of Interactive Genetic Algorithm to Fashion Design
,”
Eng. Applic. Artif. Intell.
,
13
(
6
), pp.
635
644
.
14.
Kelly
,
J.
, and
Papalambros
,
P.
, 2007, “
Use of Shape Preference Information in Product Design
,”
International Conference on Engineering Design
,
Paris, France, Citeseer
.
15.
Petiot
,
J.
, and
Grognet
,
S.
, 2006, “
Product Design: A Vectors Field-Based Approach for Preference Modelling
,”
ASME J. Eng. Des.
,
17
(
3
), pp.
217
233
.
16.
MacDonald
,
E.
,
Gonzalez
,
R.
, and
Papalambros
,
P.
, 2009, “
Preference Inconsistency in Multidisciplinary Design Decision Making
,”
ASME J. Mech. Des.
,
131
,
031009
.
17.
Tong
,
S.
, and
Koller
,
D.
, 2002, “
Support Vector Machine Active Learning With Applications to Text Classification
,”
J. Mach. Learn. Res.
,
2
, pp.
45
66
.
18.
Vapnik
,
V.
, 1998,
Statistical Learning Theory
, Vol.
2
,
Wiley
,
New York
.
19.
Osugi
,
T.
,
Kim
,
D.
, and
Scott
,
S.
, 2005, “
Balancing Exploration and Exploitation: A New Algorithm for Active Machine Learning
,”
Fifth IEEE International Conference on Data Mining
,
IEEE
, p.
8
.
20.
Baram
,
Y.
,
El-Yaniv
,
R.
, and
Luz
,
K.
, 2004, “
Online Choice of Active Learning Algorithms
,”
J. Mach. Learn. Res.
,
5
, pp.
255
291
.
21.
Basudhar
,
A.
, and
Missoum
,
S.
, 2010, “
An Improved Adaptive Sampling Scheme for the Construction of Explicit Boundaries
,”
Struct. Multidiscip. Optim.
,
42
(
4
) pp.
1
13
.
22.
Chang
,
C.
, and
Lin
,
C.
, 2001, LIBSVM: A Library for Support Vector Machines.
23.
Jones
,
D.
,
Schonlau
,
M.
, and
Welch
,
W.
, 1998, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
24.
Sacks
,
J.
,
Welch
,
W.
,
Mitchell
,
T.
, and
Wynn
,
H.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.
25.
Jones
,
D.
, 2001, “
The DIRECT Global Optimization Algorithm
,”
Encyclopedia Optim.
,
1
, pp.
431
440
.
26.
Chipperfield
,
A.
, and
Fleming
,
P.
, 1995, “
The MATLAB Genetic Algorithm Toolbox
,” Colloquium Digest-IEE,
Citeseer
, p.
10
.
You do not currently have access to this content.