We provide an introduction and state of the art overview of integrated layout design of multicomponent systems. We review several packing optimization and overlap detection strategies, some tree-based methods, such as octrees and spheretrees, and a finite circle method (FCM) proposed to favor gradient-based optimization algorithms. Integrated layout design techniques for simultaneous packing and structure topology optimization of multicomponent systems are reviewed; two typical approaches for system stiffness maximization are reviewed and compared in detail. Design of multicomponent systems under inertia forces is presented using polynomial interpolation models; constraints to the centroid position, moment of inertia, and volume fraction are included. Applications to piezoelectric multi-actuated microtools and integrated layout design of bridge systems are presented. Finally, the effectiveness of the FCM, applications to 3D problems, and local optimum phenomena are discussed.

References

References
1.
Carbonari
,
R. C.
,
Silva
,
E. C. N.
, and
Paulino
,
G. H.
, 2009, “
Multi-Actuated Functionally Graded Piezoelectric Micro-Tools Design: A Multiphysics Topology Optimization Approach
,”
Int.J. Numer. Methods Eng.
,
77
(
3
), pp.
301
336
.
2.
Lyu
,
N.
, and
Saitou
,
K.
, 2005, “
Decomposition-Based Assembly Synthesis of a Three-Dimensional Body-in-White Model for Structural Stiffness
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
34
48
.
3.
Chickermane
,
H.
, and
Gea
,
H. C.
, 1997, “
Design of Multi-Component Structure Systems for Optimal Layout Topology and Joint Locations
,”
Eng. Comput.
,
13
(
4
), pp.
235
243
.
4.
Cagan
,
J.
,
Shimada
,
K.
, and
Yin
,
S.
, 2002, “
A Survey of Computational Approaches to Three-Dimensional Layout Optimization
,”
Comput.-Aided Des.
,
34
(
8
), pp.
597
611
.
5.
Blouin
,
V. Y.
,
Miao
,
Y.
,
Zhou
,
X.
, and
Fadel
,
G. M.
, 2004, “
An Assessment of Configuration Design Methodologies
,”
10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, New York.
6.
Aladahalli
,
C.
,
Cagan
,
J.
, and
Shimada
,
K.
, 2007, “
Objective Function Effect Based Pattern Search—Theoretical Framework Inspired by 3D Component Layout
,”
ASME J. Mech. Des.
,
129
(
3
), pp.
243
254
.
7.
Zhang
,
B.
,
Teng
,
H. F.
, and
Shi
,
Y. J.
, 2008, “
Layout Optimization of Satellite Module Using Soft Computing Techniques
,”
Appl. Soft Comput.
,
8
(
1
), pp.
507
521
.
8.
Fujita
,
K.
,
Akagi
,
S.
, and
Hase
,
H.
, 1991, “
Hybrid Approaches to Plant Layout Design Using Constraint Directed Search and an Optimization Technique
,”
Proceedings of 17th ASME Design Automation Conference
, Vol.
1
, pp.
131
138
.
9.
Landon
,
M. D.
, and
Balling
,
R. J.
, 1994, “
Optimal Packaging of Complex Parametric Solids According to Mass Property Criteria
,”
ASME J. Mech. Des.
,
116
, pp.
375
381
.
10.
De Bont
,
F. M. J.
,
Aarts
,
E. H. L.
,
Meehan
,
P.
, and
O’Brien
,
C. G.
, 1988, “
Placement of Shapeable Blocks
,”
Philips J. Res.
,
43
, pp.
1
22
.
11.
Pál
,
L.
, 2006, “
A Genetic Algorithm for the Two-Dimensional Single Large Object Placement Problem
,”
Proceedings of 3rd Romanian-Hungarian Joint Symposium on Applied Computational Intelligence
.
12.
Huang
,
W. Q.
,
Chen
,
D. B.
, and
Xu
,
R. C.
, 2007, “
A New Heuristic Algorithm for Rectangle Packing
,”
Comput. Oper. Res.
,
34
, pp.
3270
3280
.
13.
Clautiaux
,
F.
,
Carlier
,
J.
, and
Moukrim
,
A.
, 2007, “
A New Exact Method for the Two-Dimensional Bin-Packing Problem With Fixed Orientation
,”
Oper. Res. Lett.
,
35
, pp.
357
364
.
14.
Miyazawa
,
F. K.
, and
Wakabayashi
,
Y.
, 2007, “
Two- and Three-Dimensional Parametric Packing
,”
Comput. Oper. Res.
,
34
, pp.
2589
2603
.
15.
Meagher
,
D.
, 1982, “
Geometric Modeling Using Octree Encoding
,”
Comput. Graph. Image Process.
,
19
(
2
), pp.
129
147
.
16.
Samet
,
H.
, 1989,
Spatial Data Structures: Quadtree, Octree and Other Hierarchical Methods
,
Addison-Wesley
,
Reading, MA
.
17.
Moore
,
A.
, 2002, “
The Circle Tree—Hierarchical Structure for Efficient Storage, Access and Multi-Scale Representation of Spatial Data
,” SIRC 2002, Dunedin, New Zealand.
18.
Hubbard
,
P. M.
, 1993, “
Interactive Collision Detection
,”
Proceedings of IEEE Symposium on Research Frontiers in Virtual Reality
,
San Jose, CA
.
19.
Quinlan
,
S.
, 1994, “
Efficient Distance Computation Between Non-Convex Objects
,”
Proceedings of International Conference on Robotics and Automation
,
San Jose, CA
, pp.
3324
3329
.
20.
Cameron
,
S.
, 1991, “
Approximation Hierarchies and s-Bounds
,”
Proceedings Symposium on Solid Modeling Foundations and CAD/CAM Applications
,
Austin, TX
, pp.
129
137
.
21.
Cagan
,
J.
,
Degentesh
,
D.
, and
Yin
,
S.
, 1998, “
A Simulated Annealing-Based Algorithm Using Hierarchical Models for General Three-Dimensional Component Layout
,”
Comput. Aided Des.
,
30
, pp.
781
790
.
22.
Lin
,
M.
, and
Gottschalk
,
S.
, 1998, “
Collision Detection Between Geometric Models: A Survey
,”
Proceeding of IMA Conference on Mathematics of Surfaces
.
23.
Zhang
,
W. H.
, and
Zhang
,
Q.
, 2009, “
Finite-Circle Method for Component Approximation and Packing Design Optimization
,”
Eng. Optimiz.
,
41
(
10
), pp.
971
987
.
24.
Svanberg
,
K.
, 1995, “
A Globally Convergent Version of MMA Without Linesearch
,”
First World Congress of Structural and Multidisciplinary Optimization
,
Pergamon
,
New York
, pp.
9
16
.
25.
Radovcic
,
Y.
, and
Remouchamps
,
A.
, 2001, “
BOSS QUATTRO: an open system for parametric design
,”
Struct. Multidiscip. Optim.
,
23
(
2
), pp.
140
152
.
26.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2003,
Topology Optimization: Theory, Method and Application
,
Springer
,
Berlin/Heidelberg/New York
.
27.
Allaire
,
G.
,
Jouve
,
F.
, and
Maillot
,
H.
, 2004, “
Topology Optimization for Minimum Stress Design With the Homogenization Method
,”
Struct. Multidiscip. Optim.
,
28
(
2–3
), pp.
87
98
.
28.
Bendsøe
,
M. P.
, 1989, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Multidiscip. Optim.
,
1
(
4
), pp.
193
202
.
29.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
, 1991, “
The COC Algorithm, Part II: Topological, Geometry and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1–3
), pp.
309
336
.
30.
Stolpe
,
M.
, and
Svanberg
,
K.
, 2001, “
An Alternative Interpolation Scheme for Minimum Compliance Topology Optimization
,”
Struct. Multidiscip. Optim.
,
22
(
2
), pp.
116
124
.
31.
Johanson
,
R.
,
Papalambros
,
P.
, and
Kikuchi
,
N.
, 1994, “
Simultaneous Topology and Material Microstructure Design
” (Adv. Struct. Optim.),
Proceedings of the Second World Conference on Computational Structures Technology Part 2 (of 4)
, Athens, Greece, August 30-September 1, pp.
143
149
.
32.
Jiang
,
T.
, and
Chirehdast
,
M.
, 1997, “
A Systems Approach to Structural Topology Optimization: Designing Optimal Connections
,”
ASME J. Mech. Des.
,
119
(
1
), pp.
40
47
.
33.
Chickermane
,
H.
, and
Gea
,
H. C.
, 1997, “
Design of Multi-Component Structure Systems for Optimal Layout Topology and Joint Locations
,”
Eng. Comput.
,
13
(
4
), pp.
235
243
.
34.
Chickermane
,
H.
,
Gea
,
H. C.
,
Yang
,
R. J.
, and
Chuang
,
C. H.
, 1999, “
Optimal Fastener Pattern Design Considering Bearing Loads
,”
Struct. Multidiscip. Optim.
,
17
(
2–3
), pp.
140
146
.
35.
Li
,
Q.
,
Steven
,
G. P.
, and
Xie
,
Y. M.
, 2001, “
Evolutionary Structural Optimization for Connection Topology Design of Multi-Component Systems
,”
Eng. Comput.
,
18
(
3–4
), pp.
460
479
.
36.
Qian
,
Z. Y.
, and
Ananthasuresh
G. K.
, 2004, “
Optimal Embedding of Rigid Objects in the Topology Design of Structures
,”
Mech. Based Des. Struct. Mach.
,
32
(
2
), pp.
165
193
.
37.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Optimization of Compliant Mechanisms With Multiple Materials Using a Peak Function Material Interpolation Scheme
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
49
62
.
38.
Zhu
,
J. H.
,
Zhang
,
W. H.
, and
Beckers
,
P.
, 2008, “
Simultaneous Design of Components Layout and Supporting Structures Using Coupled Shape and Topology Optimization
,”
Struct. Multidiscip. Optim.
,
36
(
1
), pp.
29
41
.
39.
Zhu
,
J. H.
,
Zhang
,
W. H.
, and
Beckers
,
P.
, 2009, “
Integrated Layout Design of Multi-Component System
,”
Int. J. Numer. Methods Eng.
,
78
(
6
), pp.
631
651
.
40.
Zhu
,
J. H.
,
Zhang
,
W. H.
, and
Beckers
,
P.
, 2010, “
On the Multi-Component Layout Design With Inertial Force
,”
J. Comput. Appl. Math.
,
234
(
7
), pp.
2222
2230
.
41.
Zhu
,
J. H.
, and
Zhang
,
W. H.
, 2010, “
Integrated Layout Design of Supports and Structures
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
9–12
), pp.
557
569
.
42.
Zhu
,
J. H.
, 2008, “
Integrated Layout Design of Multi-Component Systems
,” Ph.D. thesis, University of Liege, Belgium.
43.
Zhu
,
J. H.
,
Zhang
,
W. H.
, and
Xia
,
L.
, 2010, “
Improved Computational Efficiency for Integrated Layout Design
,”
3rd International Conference on Multidisciplinary Design Optimization and Applications
, June 21–23, Paris, France.
44.
Neves
,
M. M.
,
Rodrigues
,
H.
, and
Guedes
,
J. M.
, 1995, “
Generalized Topology Design of Structures With a Buckling Load Criterion
,”
Struct. Optim.
10
(
2
), pp.
71
78
.
45.
Pedersen
,
N. L.
, 2000, “
Maximization of Eigenvalues Using Topology Optimization
,”
Struct. Multidiscip. Optim.
,
20
(
1
), pp.
2
11
.
46.
Bruyneel
,
M.
, and
Duysinx
,
P.
, 2004, “
Note on Topology Optimization of Continuum Structures Including Self-Weight
,”
Struct. Multidiscip. Optim.
,
29
(
4
), pp.
245
256
.
47.
Carbonari
,
R. C.
,
Silva
,
E. C. N.
, and
Nishiwaki
,
S.
, 2005, “
Design of Piezoelectric Multi-Actuated Microtools Using Topology Optimization
,”
Smart Mater. Struct.
14
(
6
), pp.
1431
1447
.
48.
Carbonari
,
R. C.
,
Silva
,
E. C. N.
, and
Nishiwaki
,
S.
, 2007, “
Optimum Placement of Piezoelectric Material in Piezoactuator Design
,”
Smart Mater. Struct.
16
(
1
), pp.
207
220
.
49.
Buhl
,
T.
, 2001, “
Simultaneous Topology Optimization of Structure and Supports
,”
Struct. Multidiscip. Optim.
,
23
(
5
), pp.
336
346
.
50.
Duysinx
,
P.
, and
Bendsøe
,
M. P.
, 1998, “
Topology Optimization of Continuum Structures With Local Stress Constraints
,”
Int. J. Numer. Methods Eng.
,
43
(
8
), pp.
1453
1478
.
You do not currently have access to this content.