Robust design optimization (RDO) seeks to find optimal designs which are less sensitive to the uncontrollable variations that are often inherent to the design process. Studies using Evolutionary Algorithms (EAs) for RDO are not too many. In this work, we propose enhancements to an EA based robust optimization procedure with explicit function evaluation saving strategies. The proposed algorithm, IDEAR, takes into account a specified expected uncertainty in the design variables and then imposes the desired robustness criteria during the optimization process to converge to robust optimal solution(s). We pick up a number of Bi-objective engineering design problems from the standard literature and study them in the proposed robust optimization framework to demonstrate the enhanced performance. A cross-validation study is performed to analyze whether the solutions obtained are truly robust and also make some observations on how robust optimal solutions differ from the performance maximizing solutions in the design space. We perform a rigorous analysis of the key features of IDEAR to illustrate its functioning. The proposed function evaluation saving strategies are generic and their applications are worth exploring in other areas of computational design optimization.

References

References
1.
Ben-Tal
,
A.
, and
Nemirovski
,
A.
, 2000, “
Robust Solutions of Linear Programming Problems Contaminated With Uncertain Data
,”
Math. Program.
,
88
(
3
), pp.
411
424
.
2.
Deb
,
K.
, 2001,
Multi-Objective Optimization Using Evolutionary Algorithms,
Wiley
,
New York
.
3.
Parkinson
,
A.
, 1995, “
Robust Mechanical Design Using Engineering Models
,”
J. Vibr. Acoust.
,
117
, pp.
48
54
.
4.
Chen
,
W.
,
Allen
,
J.
,
Tsui
,
K.
, and
Mistree
,
F.
, 1996, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
,
118
, pp.
478
485
.
5.
Branke
,
J.
, 1998, “
Creating Robust Solutions by Means of Evolutionary Algorithms
,”
in Parallel Problem Solving from Nature—PPSN V
,
Springer
,
New York
, pp.
119
128
.
6.
Tsutsui
,
S.
, and
Ghosh
,
A.
, 1997, “
Genetic Algorithms With a Robust Solution Searching Scheme
,”
IEEE Trans. Evol. Comput.
,
1
(
3
), pp.
201
208
.
7.
Beyer
,
H.
, and
Sendhoff
,
B.
, 2007, “
Robust Optimization—A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
33–34
), pp.
3190
3218
.
8.
Papalambros
,
P.
, and
Wilde
,
D.
, 2000,
Principles of Optimal Design: Modeling and Computation
,
Cambridge University Press
,
Cambridge, New York
.
9.
Messac
,
A.
, and
Ismail-Yahaya
,
A.
, 2002, “
Multiobjective Robust Design Using Physical Programming
,”
Struct. Multidiscip. Optim.
,
23
(
5
), pp.
357
371
.
10.
Lee
,
S.
,
Chen
,
W.
, and
Kwak
,
B.
, 2009, “
Robust Design With Arbitrary Dusing Gauss-Type Quadrature Formula
,”
Struct. Multidiscip. Optim.
,
39
(
3
), pp.
227
243
.
11.
Azarm
,
S.
, and
Li
,
W.
, 1990. “
Optimality and Constrained Derivatives in Two-Level Design Optimization
”.
J. Mech. Des.
,
112
(
4
), pp.
563
568
.
12.
Li
,
M.
,
Azarm
,
S.
,
Williams
,
N.
,
Al Hashimi
,
S.
,
Almansoori
,
A.
, and
Al Qasas
,
N.
, 2009, “
Integrated Multi-Objective Robust Optimization and Sensitivity Analysis With Irreducible and Reducible Interval Uncertainty
,”
Eng. Optim.
,
41
(
10
), pp.
889
908
.
13.
Wang
,
Z.
,
Huang
,
H.
, and
Liu
,
Y.
, 2010, “
A Unified Framework for Integrated Optimization Under Uncertainty
,”
J. Mech. Des.
,
132
, p.
051008
.
14.
Lu
,
X.
, and
Li
,
H.-X.
, 2011, “
Robust Design for Dynamic System Under Model Uncertainty
,”
J. Mech. Des.
,
133
(
2
), p.
021006
.
15.
Lu
,
X.
, and
Li
,
H.-X.
, 2009, “
Perturbation Theory Based Robust Design Under Model Uncertainty
,”
J. Mech. Des.
,
131
(
11
), p.
111006
.
16.
McAllister
,
C.
, and
Simpson
,
T.
, 2003, “
Multidisciplinary Robust Design Optimization of an Internal Combustion Engine
,”
J. Mech. Des.
,
125
(
1
), pp.
124
130
.
17.
Park
,
G.
,
Lee
,
T.
,
Kwon
,
H.
, and
Hwang
,
K.
, 2006, “
Robust Design: An Overview
,”
AIAA J.
,
44
(
1
), pp.
181
191
.
18.
Jin
,
Y.
, and
Sendhoff
,
B.
, 2003, “
Trade-Off Between Performance and Robustness: An Evolutionary Multiobjective Approach
,”
in Evolutionary Multi-Criterion Optimization
,
Springer
,
New York
, pp.
237
252
.
19.
Ray
,
T.
, 2002, “
Constrained Robust Optimal Design Using a Multiobjective Evolutionary Algorithm
,”
in Proceedings of the IEEE Congress on Evolutionary Computation
, Vol.
1
,
IEEE
, pp.
419
424
.
20.
Li
,
M.
,
Azarm
,
S.
, and
Aute
,
V.
, 2005, “
A Multi-Objective Genetic Algorithm for Robust Design Optimization
,”
in Proceedings of the 2005 Conference on Genetic and Evolutionary Computation (GECCO)
,
ACM
, pp.
25
29
.
21.
Deb
,
K.
, and
Gupta
,
H.
, 2006, “
Introducing Robustness in Multi-objective Optimization
,”
Evol. Comput.
,
14
(
4
), pp.
463
494
.
22.
Kruisselbrink
,
J.
,
Emmerich
,
M.
, and
Back
,
T.
, 2011, “
An Archive Maintenance Scheme for Finding Robust Solutions
,”
in Parallel Problem Solving from Nature–PPSNXI
,
Springer
,
New York
, pp.
214
223
.
23.
Chan
,
R.
, and
Sudhoff
,
S.
, 2010, “
An Evolutionary Computing approach to Robust Design in the Presence of Uncertainties
,”
IEEE Trans. Evol. Comput.
,
14
(
6
), pp.
900
912
.
24.
Ray
,
T.
,
Singh
,
H.
,
Isaacs
,
A.
, and
Smith
,
W.
, 2009, “
Infeasibility Driven Evolutionary Algorithm for Constrained Optimization
,”
Constraint-Handling in Evolutionary Optimization
,
Springer
,
Germany
, pp.
145
165
.
25.
Deb
,
K.
, 2000, “
An Efficient Constraint Handling Method for Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
186
(
2–4
), pp.
311
338
.
26.
Ray
,
T.
, and
Smith
,
W.
, 2006, “
A Surrogate Assisted Parallel Multiobjective Evolutionary Algorithm for Robust Engineering Design
,”
Eng. Optim.
,
38
(
8
), pp.
997
1011
.
27.
Ong
,
Y.
,
Nair
,
P.
, and
Lum
,
K.
, 2006, “
Max-Min Surrogate-Assisted Evolutionary Algorithm for Robust Design
,”
IEEE Trans. Evol. Comput.
,
10
(
4
), pp.
392
404
.
28.
Shimoyama
,
K.
,
Lim
,
J.
,
Jeong
,
S.
,
Obayashi
,
S.
,
Koishi
,
M.
,
et al.
, 2009, “
Practical Implementation of Robust Design Assisted by Response Surface Approximation and Visual Data-Mining
,”
J. Mech. Des.
,
131
, p.
061007
.
29.
Reklaitis
,
G.
,
Ravindran
,
A.
, and
Ragsdell
,
K.
, 1983,
Engineering Optimization: Methods and Applications
,
Wiley-Interscience
,
New York
.
30.
Deb
,
K.
,
Gupta
,
S.
,
Daum
,
D.
,
Branke
,
J.
,
Mall
,
A.
, and
Padmanabhan
,
D.
, 2009, “
Reliability-Based Optimization Using Evolutionary Algorithms
,”
IEEE Trans. Evol. Comput.
,
13
(
5
), pp.
1054
1074
.
31.
Hajela
,
P.
, and
Shih
,
C.
, 1990, “
Multiobjective Optimum Design in Mixed Integer and Discrete Design Variable Problems
,”
AIAA J.
,
28
(
4
), pp.
670
675
.
You do not currently have access to this content.