Most engineered systems are designed with a passive and fixed design capacity and, therefore, may become unreliable in the presence of adverse events. Currently, most engineered systems are designed with system redundancies to ensure required system reliability under adverse events. However, a high level of system redundancy increases a system’s life-cycle cost (LCC). Recently, proactive maintenance decisions have been enabled through the development of prognostics and health management (PHM) methods that detect, diagnose, and predict the effects of adverse events. Capitalizing on PHM technology at an early design stage can transform passively reliable (or vulnerable) systems into adaptively reliable (or resilient) systems while considerably reducing their LCC. In this paper, we propose a resilience-driven system design (RDSD) framework with the goal of designing complex engineered systems with resilience characteristics. This design framework is composed of three hierarchical tasks: (i) the resilience allocation problem (RAP) as a top-level design problem to define a resilience measure as a function of reliability and PHM efficiency in an engineering context, (ii) the system reliability-based design optimization (RBDO) as the first bottom-level design problem for the detailed design of components, and (iii) the system PHM design as the second bottom-level design problem for the detailed design of PHM units. The proposed RDSD framework is demonstrated using a simplified aircraft control actuator design problem resulting in a highly resilient actuator with optimized reliability, PHM efficiency and redundancy for the given parameter settings.

References

References
1.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
2.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
L.
, 2005, “
Enriched Performance Measure Approach (PMA+) for Reliability-Based Design Optimization
,”
AIAA J.
,
43
(
4
), pp.
874
884
.
3.
McDonald
,
M.
, and
Mahadevan
,
S.
, 2008, “
Reliability-Based Optimization with Discrete and Continuous Decision and Random Variables
,”
ASME J. Mech. Des.
,
130
(
6
),
061401
.
4.
Kim
,
C.
, and
Choi
,
K. K.
, 2008, “
Reliability-Based Design Optimization Using Response Surface Method with Prediction Interval Estimation
,”
ASME J. Mech. Des.
,
130
(
12
),
121401
.
5.
Youn
,
B. D.
, and
Wang
,
P.
, 2008, “
Bayesian Reliability-Based Design Optimization Using Eigenvector Dimension Reduction (EDR) Method
,”
Struct. Multidiscipl. Optim.
,
36
(
2
), pp.
107
123
.
6.
Wang
,
P.
,
Youn
,
B. D.
,
Xi
,
Z.
, and
Artemis
,
K.
, 2009, “
Bayesian Reliability Analysis with Evolving, Insufficient and Subjective Data Sets
,”
ASME J. Mech. Des.
,
131
(
11
),
111008
.
7.
Rahman
,
S
, and
Xu
,
H.
, 2004, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
393
408
.
8.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Yi
,
K.
, 2005, “
Performance Moment Integration (PMI) Method for Quality Assessment in Reliability-based Robust Design Optimization
,”
Mech. Based Des. Struct. Mach.
,
33
(
2
), pp.
185
213
.
9.
Youn
,
B. D.
,
Xi
,
Z.
, and
Wang
,
P.
, 2008, “
Eigenvector Dimension Reduction (EDR) Method for Sensitivity-Free Uncertainty Quantification
,”
Struct. Multidiscip. Optim.
,
37
(
1
), pp.
13
28
.
10.
Xiong
,
F.
,
Greene
,
S.
,
Chen
,
W.
,
Xiong
,
Y.
, and
Yang
,
S.
, 2010, “
A New Sparse Grid Based Method for Uncertainty Propagation
,”
Struct. Multidiscip. Optim.
,
41
(
3
), pp.
335
349
.
11.
Christer
,
A. H.
, and
Waller
,
W. M.
, 1984, “
Delay Time Models of Industrial Inspection Maintenance Problems
,”
J. Oper. Res. Soc.
,
35
(
5
), pp.
401
406
.
12.
Makis
,
V.
,
Yimin
,
Z.
, and
Jardine
,
A. K. S.
, 2006, “
Adaptive State Detection of Gearboxes under Varying Load Conditions Based on Parametric Modeling
,”
Mech. Syst. Signal Process.
,
20
(
1
), pp.
188
221
.
13.
Chinnam
,
R. B.
, and
Baruah
,
P.
, 2003, “
A Neuro-Fuzzy Approach for Estimating Mean Residual Life in Condition-Based Maintenance Systems
,”
Int. J. Mater. Prod. Technol.
,
20
(
1–3
), pp.
166
179
.
14.
Lin
,
C. C.
, and
Tseng
,
H. Y.
, 2005, “
A Neural Network Application for Reliability Modeling and Condition-Based Predictive Maintenance
,”
Int. J. Mater. Prod. Technol.
,
25
(
1–2
), pp.
174
179
.
15.
Alguindigue
,
I. E.
,
Loskiewicz-Buczak
,
A.
, and
Uhrig
,
R. E.
, 1993, “
Monitoring and Diagnosis of Rolling Element Bearings Using Artificial Neural Networks
,”
IEEE Trans. Ind. Electron. Control Instrum.
,
40
(
2
), pp.
209
217
.
16.
Ebersbach
,
S.
,
Peng
,
Z.
, and
Kessissoglou
,
N. J.
, 2006, “
The Investigation of The Condition and Faults of a Spur Gearbox Using Vibration and Wear Debris Analysis Techniques
,”
Wear
,
260
(
1–2
), pp.
16
24
.
17.
Dimla
,
D. E.
, 2000, “
Sensor Signals for Tool-Wear Monitoring in Metal Cutting Operations - a Review of Methods
,”
Int. J. Mach. Tools Manuf.
,
40
(
8
), pp.
1073
1098
.
18.
Martin
,
K. F.
, 1994, “
Review by Discussion of Condition Monitoring and Fault Diagnosis in Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
34
(
4
), pp.
527
551
.
19.
Bartoletti
,
C.
,
Desiderio
,
M.
,
Di Carlo
,
D.
,
Fazio
,
G.
,
Muzi
,
F.
,
Sacerdoti
,
G.
, and
Salvatori
,
F.
, 2004, “
Vibroacoustic Techniques to Diagnose Power Transformers
,”
IEEE Trans. Power Delivery
,
19
(
1
), pp.
221
229
.
20.
Bengtsson
,
C.
, 1996, “
Status and Trends in Transformer Monitoring
,”
IEEE Trans. Power Delivery
,
11
, pp.
1379
1384
.
21.
Booth
,
C.
, and
McDonald
,
J. R.
, 1998, “
The Use of Artificial Neural Networks for Condition Monitoring of Electrical Power Transformers
,”
Neurocomputing
,
23
, pp.
97
109
.
22.
Luo
,
J.
,
Pattipati
,
K. R.
,
Qiao
,
L.
, and
Chigusa
,
S.
, 2008, “
Model-Based Prognostic Techniques Applied to a Suspension System
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
,
38
(
5
), pp.
1156
1168
.
23.
Gebraeel
,
N.
, and
Pan
,
J.
, 2008, “
Prognostic Degradation Models for Computing and Updating Residual Life Distributions in a Time-Varying Environment
,”
IEEE Trans. Device Mater. Reliab.
,
57
(
4
), pp.
539
550
.
24.
Gebraeel
,
N.
,
Elwany
,
A.
, and
Pan
,
J.
, 2009, “
Residual Life Predictions in the Absence of Prior Degradation Knowledge
,”
IEEE Trans. Device Mater. Reliab.
,
58
(
1
), pp.
106
117
.
25.
Schwabacher
,
M.
, 2005, “
A Survey of Data-Driven Prognostics
”,
Proceedings of AIAA Infotech at Aerospace Conference
, Arlington, VA.
26.
Wang
,
T.
,
Yu
,
J.
,
Siegel
,
D.
, and
Lee
,
J.
, 2008, “
A Similarity-Based Prognostics Approach for Remaining Useful Life Estimation of Engineered Systems
,”
International Conference on Prognostics and Health Management
, Oct. 6–9, Denver, CO.
27.
Zio
,
E.
, and
Di Maio
,
F.
, 2010, “
A Data-Driven Fuzzy Approach for Predicting the Remaining Useful Life in Dynamic Failure Scenarios of a Nuclear Power Plant
,”
Reliab. Eng. Syst. Saf.
,
95
(
1
), pp.
49
57
.
28.
Goebel
,
K.
,
Eklund
,
N.
, and
Bonanni
,
P.
, 2006, “
Fusing Competing Prediction Algorithms for Prognostics
,”
Proceedings of IEEE Aerospace Conference
, New York.
29.
Saha
,
B.
,
Goebel
,
K.
,
Poll
,
S.
, and
Christophersen
,
J.
, 2009, “
Prognostics Methods for Battery Health Monitoring Using a Bayesian Framework
,”
IEEE Trans. Instrum. Meas.
,
58
(
2
), pp.
291
296
.
30.
Yanagisawa
,
A.
, and
Kojima
,
T.
, 2006, “
Degradation of InGaN Blue Light-Emitting Diodes under Continuous and Low-Speed Pulse Operations
,”
Microelectron. Reliab.
,
43
(
6
), pp.
977
980
.
31.
Hausler
,
K.
,
Zeimer
,
U.
,
Sumpf
,
B.
,
Erbert
,
G.
, and
Trankle
,
G.
, 2008, “
Degradation Model Analysis of Laser Diodes
,”
J. Mater. Sci.: Mater. Electron.
,
9
, pp.
160
164
.
32.
Klasson
,
T. K.
, and
Just
,
E. M.
, 1999, “
Computer Model for Prediction of PCB Dechlorination and Biodegradation Endpoints
,”
Proceedings the 5th International Symposium on In Situ and On-Site Bioremediation
, San Diego, CA, April 19–22.
33.
Shrive
,
N. G.
, 2005, “
Intelligent Structural Health Monitoring: a Civil Engineering Perspective
,”
IEEE Trans. Syst. Man Cybern.
,
2
(
10–12
), pp.
1973
1977
.
34.
Aven
,
T.
, 1996, “
Condition-based Replacement Policies—A Counting Process Approach
,”
Reliab. Eng. Syst. Saf.
,
51
(
3
), pp.
275
281
.
35.
Grall
,
A.
,
Bérenguer
,
C.
, and
Dieulle
,
L.
, 2002, “
A Condition-Based Maintenance Policy for Stochastically Deteriorating Systems
,”
Reliab. Eng. Syst. Saf.
,
76
(
2
), pp.
167
180
.
36.
Deloux
,
E.
,
Castanier
,
B.
, and
Berenguer
,
C.
, 2009, “
Predictive Maintenance Policy for a Gradually Deteriorating System Subject to Stress
,”
Reliab. Eng. Syst. Saf.
,
94
(
2
), pp.
418
431
.
37.
Bodden
,
D. S.
,
Hadden
,
W.
,
Grube
,
B. E.
, and
Clements
,
N. S.
, 2005, “
PHM as a Design Variable in Air Vehicle Conceptual Design
,”
Proceedings of 2005 IEEE Aerospace Conference
, Mar. 5–12, Big Sky, MT, pp.
1
11
.
38.
Webb
,
C. T.
, 2007, “
What Is The Role Of Ecology in Understanding Ecosystem Resilience?
,”
BioScience
,
57
(
6
), pp.
470
471
.
39.
Hartvigsen
,
G.
,
Kinzig
,
A.
, and
Peterson
,
G.
, 1998, “
Complex Adaptive Systems: Use and Analysis of Complex Adaptive Systems in Ecosystem Science: Overview of Special Section
,”
Ecosystems
,
1
(
5
), pp.
427
430
.
40.
Kerkhoff
,
A. J.
, and
Enquist
,
B. J.
, 2007, “
The Implications of Scaling Approaches for Understanding Resilience and Reorganization in Ecosystems
,”
BioScience
,
57
(
6
), pp.
489
499
.
41.
Luthar
,
S. S.
,
Cicchetti
,
D.
, and
Becker
,
B.
, 2000, “
The Construct of Resilience: a Critical Evaluation and Guidelines for Future Work
,”
Child Dev.
,
71
(
3
), pp.
543
562
.
42.
Bonanno
,
G. A.
,
Moskowitz
,
J. T.
,
Papa
,
A.
, and
Folkman
,
S.
, 2005, “
Resilience to Loss in Bereaved Spouses, Bereaved Parents, and Bereaved Gay Men
,”
J. Pers. Soc. Psychol.
,
88
(
5
), pp.
827
843
.
43.
Bonanno
,
G. A.
, and
Galea
,
S.
, 2007, “
What Predicts Psychological Resilience After Disaster?” The Role of Demographics, Resources, and Life Stress
,”
J. Consult Clin. Psychol.
,
75
(
5
), pp.
671
682
.
44.
Luthar
,
S. S.
,
Poverty and Children’s Adjustment
(
Sage
,
Newbury Park, CA
, 1999).
45.
Sheffi
,
Y.
,
The Resilient Enterprise: Overcoming Vulnerability for Competitive Enterprise
(
MIT Press
,
Cambridge, MA
, 2005).
46.
Hollnagel
,
E.
,
Woods
,
D. D.
, and
Leveson
,
N.
(eds.), 2006,
Resilience Engineering: Concepts and Precepts
,
Ashgate
,
Aldershot, UK
.
47.
Hollnagel
,
E.
, 2006, “
Achieving System Safety by Resilience Engineering
,”
The 1st IET International Conference on System Safety
, June 6–8,
London, United Kingdom
, pp.
184
195
.
48.
Hsieh
,
Y.
,
Chen
,
T.
, and
Bricker
,
D.
, 1998, “
Genetic Algorithms for Reliability Design Problems
,”
Microelectron. Reliab.
,
38
(
10
), pp.
1599
1605
.
49.
Liang
,
Y.-C.
, and
Smith
,
A. E.
, 2004, “
An Ant Colony Optimization Algorithm for the Redundancy Allocation Problem (RAP)
,”
IEEE Trans. Device Mater. Reliab.
53
(
3
), pp.
417
423
.
50.
Coelho
,
L. S.
, 2009, “
An Efficient Particle Swarm Approach for Mixed-Integer Programming in Reliability-Redundancy Optimization Applications
,”
Reliab. Eng. Syst. Saf.
,
94
(
4
), pp.
830
837
.
51.
Kuo
,
W.
, and
Zuo
,
M. J.
,
Optimal Reliability Modeling: Principles and Applications
(
John Wiley
,
Hoboken, NJ
, 2002).
52.
Rausand
,
M.
, and
Høyland
,
A.
, 2003,
System Reliability Theory: Models, Statistical Methods, and Applications
,
2nd ed.
,
Wiley-Interscience
,
Hoboken, NJ
.
53.
Frangopol
,
D. M.
,
Lin
,
K.-Y.
,
Estes
,
A.
, 1997, “
Life-Cycle Cost Design of Deteriorating Structures
,”
J. Struct. Eng.
,
123
(
10
), pp.
1390
1401
.
54.
Tillman
,
F. A.
,
Hwang
,
C. L.
, and
Kuo
,
W.
, 1977, “
Determining Component Reliability and Redundancy for Optimum System Reliability
,”
IEEE Trans. Device Mater. Reliab.
,
26
(
3
), pp.
162
165
.
55.
Dhingra
,
A. K.
, 1992, “
Optimal Apportionment of Reliability and Redundancy in Series Systems under Multiple Objectives
,”
IEEE Trans. Device Mater. Reliab.
,
41
(
4
), pp.
576
582
.
56.
Feldman
,
K.
,
Jazouli
,
T.
, and
Sandborn
,
P.
, 2009, “
A Methodology for Determining the Return on Investment Associated with Prognostics and Health Management
,”
IEEE Trans. Device Mater. Reliab.
,
58
(
2
), pp.
305
316
.
57.
Nilsson
,
J.
, and
Bertling
,
L.
, 2007, “
Maintenance Management of Wind Power Systems Using Condition Monitoring Systems—Life Cycle Cost Analysis for Two Case Studies
,”
IEEE Trans. Energy Convers.
,
22
(
1
), pp.
223
229
.
58.
Liang
,
J.
,
Mourelatos
,
Z.
, and
Nikolaidis
,
E.
, 2007, “
A Single-Loop Approach for System Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1215
1224
.
59.
Nguyen
,
T. H.
,
Song
,
J.
, and
Paulino
,
G. H.
, 2010, “
Single-Loop System Reliability-Based Design Optimization Using Matrix-Based System Reliability Method: Theory and Applications
,”
ASME J. Mech. Des.
,
132
,
011005
.
60.
Coble
,
J. B.
, and
Hines
,
J. W.
, 2008, “
Prognostic Algorithm Categorization with PHM Challenge Application
,”
IEEE, International Conference on Prognostics and Health Management
, Oct. 6–9,
Denver, CO.
61.
Saxena
,
A.
,
Celaya
,
J.
,
Balaban
,
E.
,
Goebel
,
K.
,
Saha
,
B.
,
Saha
,
S.
, and
Schwabacher
,
M.
, 2008, “
Metrics for Evaluating Performance of Prognostic Techniques
,” International Conference on Prognostics and Health Management, June 20–23, Denver, CO.
62.
Heimes
,
F. O.
, 2008, “
Recurrent Neural Networks for Remaining Useful Life Estimation
,” IEEE, International Conference on Prognostics and Health Management, Oct. 6-9, Denver, CO.
63.
Wang
,
P.
,
Youn
,
B. D.
, and
Hu
,
C.
, 2010, “
A Generic Sensor Network Design Framework Based on A Detectability Measure
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
, Aug. 15–18, Montreal, Quebec, Canada.
64.
Kmenta
,
K.
, and
Ishii
,
K.
, 2005, “
Scenario-Based Failure Modes and Effects Analysis Using Expected Cost
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
1027
1035
.
65.
Adjiman
,
C. S.
,
Androulakis
,
I. P.
, and
Floudas
,
C. A.
, 2000, “
Global Optimization of Mixed-Integer Nonlinear Problems
,”
Trans. Am. Inst. Chem. Eng.
,
46
(
9
), pp.
1769
1797
.
66.
Frischermeier
,
S.
, 1997, “
Electrohydrostatic Actuators for Aircraft Primary Flight Control - Types, Modelling and Evaluation
,” Proceedings of the Fifth Scandinavian International Conference on Fluid Power, May 28–30, Linköping, Sweden.
67.
Botten
,
S.
,
Whitley
,
C.
, and
King
,
A.
, 2000, “
Flight Control Actuation Technology for Next-Generation All-Electric Aircraft
,”
Technology Review Journal—Millenium Issue
,
Fall/Winter
.
68.
Osder
,
S.
, 1999, “
Practical View of Redundancy Management Application and Theory
,”
J. Guid. Control Dyn.
,
22
(
1
), pp.
12
21
.
69.
Gen
,
M.
, and
Cheng
,
R.
,
Genetic Algorithms and Engineering Optimization
(
John Wiley & Sons
,
New York
, 2000).
71.
Hu
,
C.
, and
Youn
,
B. D.
, 2011, “
Adaptive-Sparse Polynomial Chaos Expansion for Reliability Analysis and Design of Complex Engineering Systems
,”
Struct. Multidiscip. Optim.
,
43
(
3
), pp.
419
442
.
72.
Crowther
,
W. J.
,
Edge
,
K. A.
,
Burrows
,
C. R.
,
Atkinson
,
R. M.
, and
Wollons
,
D. J.
, 1998, “
Fault Diagnosis of a Hydraulic Actuator Circuit using Neural Networks an Output Vector Space Classification Approach
,”
Proc. Inst. Mech. Eng.—Part I: J. Syst. Control Eng.
,
212
(
11
), pp.
57
68
.
73.
An
,
L.
, and
Sepehri
,
N.
, 2006, “
Hydraulic Actuator Leakage Quantification Scheme Using Extended Kalman Filter and Sequential Test Method
,”
Proceedings of American Control Conference
, June 14–16, p.
6
.
74.
Saxena
,
A.
, and
Goebel
,
K.
, 2008, “
Damage Propagation Modeling for Aircraft Engine Run-To-Failure Simulation
,”
IEEE, International Conference on Prognostics and Health Management
, Oct. 6–9, Denver, CO.
75.
Xu
,
H.
, and
Rahman
,
S.
, 2005, “
Decomposition Methods for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
20
(
3
), pp.
239
250
.
76.
Tipping
,
M. E.
, 2001, “
Sparse Bayesian Learning and the Relevance Vector Machine
,”
J. Mach. Learn. Res.
,
1
, pp.
211
244
.
77.
Wang
,
P.
, and
Youn
,
B. D.
, 2009, “
A Generic Bayesian Framework for Real-Time Prognostics and Health Management (PHM)
,” AIAA 2009-2109, 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, May 4–7, Palm Springs, CA.
78.
Smola
,
A. J.
, and
Schölkopf
,
B.
, 2004, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
,
14
(
3
), pp.
199
222
.
79.
Cernansky
,
M.
,
Makula
,
M.
, and
Cernansky
,
L.
, 2007, “
Organization of the State Space of a Simple Recurrent Network before and after Training on Recursive Linguistic Structures
,”
Neural Networks
,
20
(
2
), pp.
236
244
.
You do not currently have access to this content.