All complex system development projects involve analysis of the system architecture. Thus far it has been assumed that there is some correct system decomposition that can be used in the architectural analysis without consideration of the sensitivity of the results to the chosen level of decomposition. We represent 88 idealized system architectures and a real complex system as a design structure matrix at two different levels of decomposition. We analyze these architectures for their degree of modularity. We find that the degree of modularity can vary for the same system when the system is represented at the two different levels of granularity. For example, the printing system used in the case study is considered slightly integral at a higher level of decomposition and quite modular at a lower level of decomposition. We further find that even though the overall results can be different depending on the level of decomposition, the direction of change toward more modular or more integral can be calculated the same regardless of the level of decomposition. We conclude that the level of decomposition can distort the results of architectural analysis and care must be taken in defining the system decomposition for any analysis.

References

1.
Van Eikema Hommes
,
Q.
, 2008, “
Comparison and Application of Metrics that Define the Components Modularity in Complex Products
,”
Proceedings of ASME 2008 International Design Engineering Technical Conferences iDETC
, Brooklyn, NY, DETC2008/DTM-49140.
2.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
, 1994,
Product Design and Development
(
McGraw-Hill
,
New York, NY
).
3.
Browning
,
T.
, 2009, “
The Many Views of a Process: Toward a Process Architecture Framework for Product Development Processes
,”
J. Syst. Eng.
,
12
, pp.
69
90
.
4.
Suh
,
N. P.
, 2001,
Axiomatic Design: Advances and Applications
(
Oxford University Press
,
New York, NY
).
5.
Sosa
,
M. E.
,
Eppinger
,
S. D.
, and
Rowles
,
C. M.
, 2007, “
A Network Approach to Define Modularity of Components in Complex Products
,”
ASME J. Mech. Des.
,
129
, pp.
1118
1129
.
6.
Sosa
,
M. E.
,
Eppinger
,
S. D.
, and
Rowles
,
C. M.
, 2003, “
Identifying Modular and Integrative Systems and Their Impact on Design Team Interactions
,
ASME J. Mech. Des.
,
125
, pp.
240
252
.
7.
Giffin
,
M.
,
de Weck
,
O.
,
Bounova
,
G.
,
Keller
,
G.
,
Eckert
,
C.
, and
Clarkson
P. J.
, 2009, “
Change Propagation Analysis in Complex Technical Systems
,”
ASME J. Mech. Des.
,
131
,
081001
.
8.
Sharman
,
D. M.
, and
Yassine
,
A. A.
, 2007, “
Architectural Valuation Using the Design Structure Matrix and Real Options Theory
,”
Concurr. Eng.
,
15
, pp.
157
173
.
9.
Smaling
,
R.
, and
de Weck
,
O.
, 2007, “
Assessing Risks and Opportunities of Technology Infusion in System Design
,”
J. Syst. Eng
,
10
, pp.
1
25
.
10.
Suh
,
E. S.
,
Furst
,
M. R.
,
Mihalyov
,
K. J.
, and
de Weck
,
O.
, 2010, “
Technology Infusion for Complex Systems: A Framework and Case Study
,”
J. Syst. Eng
,
12
,
SE
-
080701
.
11.
Otto
,
K.
, and
Wood
,
K.
, 2001,
Product Design: Techniques in Reverse Engineering and New Product Development
(
Prentice Hall
,
Upper Saddle River, NJ
).
12.
Guenov
,
M. D.
and
Barker
,
S. G.
, 2004, “
Requirements-Driven Design Decomposition: A Method for Exploring Complex System Architecture
,”
Proceedings of ASME 2004 International Design Engineering Technical Conferences iDETC
, DETC2004-57287.
13.
Alexander
,
C.
, 1964,
Notes on the Synthesis of Form
(
Harvard Business University Press
,
Cambridge, MA
).
14.
Simon
,
H. A.
, 1969,
The Architecture of Complexity, in the Science of the Artificial
(
MIT Press
,
Cambridge, MA
).
15.
Celona
,
T.
,
Embry-Perline
,
C.
, and
Hölttä-Otto
,
K.
, 2007, “
Are Modular Products Larger than Integral Products
?”
Proceedings of the International Conference on Engineering Design ICED07
, Paris, France.
16.
Hölttä-Otto
,
K.
and
O.
,
De Weck.
, 2007, “
Degree of Modularity in Engineering Systems and Products With Technical and Business Constraints
,”
Concurr. Eng. Res. Appl.
,
15
(
2
), pp.
113
126
.
17.
Engel
,
A.
, and
Browning
,
T.
, 2008, “
Designing Systems for Adaptability by Means of Architecture Options
,”
J. Syst. Eng.
,
11
(
2
), pp.
125
146
.
18.
Suh
,
E. S.
, and
Kott
,
G.
, 2010, “
Reconfigurable Parallel Printing System Design for Field Performance and Service Improvement
,”
ASME J. Mech. Des.
133
,
034505
.
19.
Simpson
,
T. W.
, 2004, “
Product Platform Design and Customization: Status and Promise
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
18
(
1
), pp.
3
20
.
20.
Gershenson
,
J. K.
,
Prasad
,
G. J.
, and
Zhang
,
Y.
, 2003, “
Product Modularity: Definitions and Benefits
,”
J. Eng. Des.
,
14
(
3
), pp.
295
313
.
21.
Baldwin
,
C. Y.
and
Clark
,
K. B.
, 2000,
Design Rules: The Power of Modularity
(
MIT Press
,
Cambridge, MA
).
22.
Simpson
,
T. W.
Marion
,
T.
de Weck
,
O.
Hölttä-Otto
,
K.
Kokkolaras
,
M.
, and
Shooter
,
S. B.
, 2006, “
Platform-Based Design and Development: Current Trends and Needs in Industry
,”
Proceedings of ASME 2006 International Design Engineering Technical Conferences iDETC
, DETC2006/DAC-99229.
23.
Bass
,
L.
,
Clements
,
P.
, and
Kazman
,
R.
, 2003,
Software Architecture in Practice
, 2nd ed.,
Addison-Wesley
,
Reading, MA
.
24.
Parnas
,
D. L.
, 1972, “
On the Criteria to be Used in Decomposing Systems into Modules
,”
Commun. ACM
,
15
, pp.
1053
1058
.
25.
Pimmler
,
T. U.
, and
Eppinger
,
S. D.
, 1994, “
Integration Analysis of Product Decomposition
,
Proceedings of ASME International Conference on Design Theory and Methodology
,
Minneapolis, MN
, pp
343
351
.
26.
Chen
,
L.
, and
Li
,
S.
, 2005, “
Analysis of Decomposability and Complexity for Design Problems in the Context of Decomposition
,”
ASME J. Mech. Des.
,
127
, pp.
545
557
.
27.
Stone
,
R. B.
,
Wood
,
K. L.
, and
Crawford
,
R. H.
, 2000, “
A Heuristic Method for Identifying Modules in Product Architectures
,”
Des. Stud.
,
21
(
1
), pp.
5
31
.
28.
Whitney
,
D. E.
,
Dong
,
Q.
,
Judson
,
J.
, and
Mascoli
,
G.
, 1999, “
Introducing Knowledge-Based Engineering Into an Interconnected Product Development Process
,”
Proceedings of ASME 1999 International Design Engineering Technical Conferences iDETC
, DETC99/DTM-8741.
29.
Dong
,
Q.
, 2002, “
Predicting and Managing System Interactions at Early Phase of Product Development Process
,” PhD Thesis, MIT Department of Mechanical Engineering, Cambridge, MA.
30.
Braha
,
D.
, and
Maimon
,
O.
, 1998, “
The Measurement of a Design Structural and Functional Complexity
,”
IEEE Trans. Syst. Man Cybern. Part A
,
28
(
4
), pp.
527
535
.
31.
Meier
,
M. W.
, and
Rechtin
,
E.
, 2000,
The Art of Systems Architecting
, 2nd ed. (
CRC Press
,
New York, NY
).
32.
Tilstra
,
A. H.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
, 2009, “
Analysis of Product Flexibility for Future Evolution Based on Design Guidelines and a High-Definition Design Structure Matrix
,”
Proceedings of ASME Design Engineering Technical Conferences iDETC
, San Diego, CA, DETC2009-86118.
33.
Hirtz
,
J.
,
Stone
,
R. B.
, and
McAdams
,
D.
, 2002, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
34.
Miller
,
D. P.
, 2008,
Building a Project Work Breakdown Structure: Visualizing Objectives, Deliverables, Activities, and Schedules
(
CRC Press
,
Boca Raton, FL
), p.
264
.
35.
Haugan
,
G. T.
, 2002,
Project Planning and Scheduling
(
Management Concepts
,
Vienna, VA
), p.
102
.
36.
Kloppenborg
,
T. J.
, 2008,
Contemporary Project Management
(
South-Western College Publishing
,
Mason, OH
), p.
480
.
37.
Holtta-Otto
,
K.
, and
Magee
,
C. L.
, 2006, “
Estimating Factors Affecting Project Task Size in Product Development—An Empirical Study
,”
IEEE Trans. Eng. Manage.
,
53
(
1
), pp.
86
94
.
38.
Helmer
,
R.
,
Yassine
,
A.
, and
Meier
,
C.
, 2010, “
Systematic Module and Interface Definition Using Component Design Structure Matrix
,”
J. Eng. Des.
,
21
(
6
), pp.
647
675
.
39.
Yu
,
T -L.
,
Yassine
,
A. A.
, and
Goldberg
,
D. E.
, 2007, “
An Information Theoretic Method for Developing Modular Architectures Using Genetic Algorithms
,”
Res. Eng. Des.
,
18
(
2
), pp.
91
109
.
40.
Ulrich
,
K. T.
, 1995, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
.
41.
Steward
,
D. T.
, 1981, “
The Design Structure System: A Method for Managing the Design of Complex Systems
,”
IEEE Trans. Eng. Manage.
,
EM-28
(
3
), pp.
71
74
.
42.
Eppinger
,
S.
,
Whitney
,
D.
,
Smith
,
R.
, and
Gebala
,
D.
, 1994, “
A Model-Based Method for Organizing Tasks in Product Development
,”
Res. Eng. Des.
,
6
, pp.
1
13
.
43.
Browning
,
T. R.
, 2001, “
Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions
,”
IEEE Trans. Eng. Manage.
,
48
(
3
), pp.
292
306
.
44.
Clarkson
,
J. P.
,
Simons
,
C.
, and
Eckert
,
C.
, 2004, “
Predicting Change Propagation in Complex Design
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
788
798
.
45.
Chiriac
,
N.
,
Hölttä-Otto
,
K.
,
Lysy
,
D.
, and
Suh
,
E.S.
, 2011, “
Three Approaches to Complex System Decomposition
,”
13th International Dependency and Structure Modeling Conference
, DSM’11, Cambridge, MA.
46.
Allen
,
K. R.
, and
Carlson-Skalak
,
S.
, 1998, “
Defining Product Architecture During Conceptual Design
,”
ASME Design Engineering Technical Conference, Design Theory and Methodology Conference
, Atlanta, GA.
47.
Newcomb
,
P. J.
,
Bras
,
B.
, and
Rosen
,
D. W.
, 1998, “
Implication of Modularity on Product Design for the Life Cycle
,”
ASME J. Mech. Des.
,
120
, pp.
483
490
.
48.
Martin
,
M.
, and
Ishii
,
K.
, 2002, “
Design for Variety: Developing Standardized and Modularized Product Platform Architecture
,”
Res. Eng. Des.
,
13
(
4
), pp.
213
235
.
49.
Guo
,
F.
, and
Gershenson
,
J. K.
, 2004, “
A Comparison of Modular Product Design Methods on Improvement and Iteration
,”
Proceedings of ASME 2004 International Design Engineering Technical Conferences iDETC
, Salt Lake City, UT, DETC2004-57396.
50.
Mikkola
,
J. H.
, and
Gassmann
,
O.
, 2003, “
Managing Modularity of Product Architectures: Toward an Integrated Theory
,”
IEEE Trans. Eng. Manage.
,
50
(
2
), pp.
204
218
.
You do not currently have access to this content.