Toxic chemicals used in product design and manufacturing are grave concerns due to their toxic impact on human health. Implementing sustainable material selection strategies on toxic chemicals can substantially improve the sustainability of products in both design and manufacturing processes. In this paper, a schematic method is presented for characterizing and benchmarking the human health impact of toxic chemicals, as a visual aid to facilitate decision-making in the material selection process for sustainable design and manufacturing. In this schematic method, the human health impact of a toxic chemical is characterized by two critical parameters: daily exposure risk R and environmental persistence T. The human health impact of a toxic chemical is represented by its position in the RT two-dimensional plot, which enables the screening and benchmarking of toxic chemicals to be easily made through comparing their relative positions in the characterization plot. A case study is performed on six toxic chemicals commonly used as solvents for cleaning and degreasing in product development and manufacturing.

2.
European Environmental Agency (EEA)
, 2003, “
The European Pollutant Emission Register
,” http://eper.eea.europa.eu/eper/http://eper.eea.europa.eu/eper/, accessed on 10/18/09.
3.
OECD (Organization for Economic Cooperation and Development)
, 2001, “
Why Pollutant Release and Transfer Registers (PRTRs) Differ: A Review of National Programmes. ENV/jm/mono (2001)16
,”
OECD Environment, Health, and Safety Publications, Series on Pollutant Release and Transfer Registers No. 4 Paris: OECD
.
4.
Holloway
,
L.
, 1998, “
Materials Selection for Optimal Environmental Impact in Mechanical Design
,”
Mater. Des.
0264-1275,
19
, pp.
133
143
.
5.
Ljungberg
,
L. Y.
, 2007, “
Materials Selection and Design for Development of Sustainable Products
,”
Mater. Des.
0264-1275,
28
, pp.
466
479
.
6.
Matos
,
M. J.
, and
Simplicio
,
M. H.
, 2006, “
Innovation and Sustainability in Mechanical Design Through Materials Selection
,”
Mater. Des.
0264-1275,
27
, pp.
74
78
.
7.
Wegst
,
U. G. K.
, and
Ashby
,
M. F.
, 1998, “
The Development and Use of a Methodology for the Environmentally Conscious Selection of Materials
,”
Proceedings of the Third Biennial World Conference on Integrated Design and Process Technology (IDPT)
, Berlin, Germany, Jul. 6–9, Vol.
5
, pp.
88
93
.
8.
Risitano
,
A.
,
Rosa
,
G. L.
, and
Giudice
,
F.
, 2005, “
Materials Selection in the Life Cycle Design Process: A Method to Integrate Mechanical and Environmental Performances in Optimal Choice
,”
Mater. Des.
0264-1275,
26
, pp.
9
20
.
9.
Tong
,
T. K. L.
, and
Chan
,
J. W. K.
, 2007, “
Multi-Criteria Material Selections and End-of-Life Product Strategy: Grey Relational Analysis Approach
,”
Mater. Des.
0264-1275,
28
, pp.
1539
1546
.
10.
Lin
,
F.
, and
Lin
,
L.
, 2003, “
A Discussion of the State-of-Art Research on Environmentally Conscious Material Selection Methodologies for the Reduction of Products’ Toxic Impact
,”
The Journal of Sustainable Product Design
,
3
, pp.
119
134
.
11.
Ashby
,
M.
, 2005,
Materials Selection in Mechanical Design
,
3rd ed.
,
Elsevier
,
New York
.
12.
Brechet
,
Y.
,
Bassetti
,
D.
,
Landru
,
D.
, and
Salvo
,
L.
, 2001, “
Challenges in Materials and Process Selection
,”
Prog. Mater. Sci.
0079-6425,
46
, pp.
407
428
.
13.
Srikar
,
V. T.
, and
Spearing
,
S. M.
, 2003, “
Materials Selection in Micromechanical Design: An Application of the Ashby Approach
,”
J. Microelectromech. Syst.
1057-7157,
12
(
1
), pp.
3
10
.
14.
Weaver
,
P. M.
,
Ashby
,
M. F.
,
Burgess
,
S.
, and
Shibaike
,
N.
, 1996, “
Selection of Materials to Reduce Environmental Impact: A Case Study on Refrigerator Insulation
,”
Mater. Des.
0264-1275,
17
(
1
), pp.
11
17
.
15.
Jee
,
D. H.
, and
Kang
,
K. J.
, 2000, “
A Method for Optimal Material Selection Aided With Decision Making Theory
,”
Mater. Des.
0264-1275,
21
, pp.
199
206
.
16.
Yuan
,
C.
, and
Dornfeld
,
D.
, 2009, “
Sustainable Material Selection of Toxic Chemicals in Design and Manufacturing From Human Health Impact Perspective
,”
ASME
Paper No. DETC 2009-87145.
17.
Liao
,
T. W.
, 1996, “
A Fuzzy Multicriteria Decision-Making Method for Material Selection
,”
J. Manuf. Syst.
0278-6125,
15
(
1
), pp.
1
12
.
18.
Goel
,
V.
, and
Chen
,
J.
, 1996, “
Application of Expert Network for Material Selection in Engineering Design
,”
Comput Ind.
0166-3615,
30
, pp.
87
101
.
19.
Sirisalee
,
P.
,
Ashby
,
M. F.
,
Parks
,
G. T.
, and
Clarkson
,
P. J.
, 2004, “
Multi-Criteria Material Selection in Engineering Design
,”
Adv. Eng. Mater.
1438-1656,
6
(
1–2
), pp.
84
92
.
20.
Giachetti
,
R. E.
, 1998, “
A Decision Support System for Material and Manufacturing Process Selection
,”
J. Intell. Manuf.
0956-5515,
9
, pp.
265
276
.
21.
Jia
,
C. Q.
,
Guardo
,
A. D.
, and
Mackay
,
D.
, 1996, “
Toxics Release Inventories: Opportunities for Improved Presentation and Interpretation
,”
Environ. Sci. Technol.
0013-936X,
30
(
2
), pp.
86A
91A
.
22.
Hertwich
,
E. G.
,
Pease
,
W. S.
, and
McKone
,
T. E.
, 1998, “
Evaluating Toxic Impact Assessment Methods: What Works Best?
,”
Environ. Sci. Technol.
0013-936X,
32
(
5
), pp.
138A
144A
.
23.
Toffel
,
M. W.
, and
Marshall
,
J. D.
, 2004, “
Improving Environmental Performance Assessment: Comparative Analysis of Weighting Methods Used to Evaluate Chemical Release Inventories
,”
J. Ind. Ecol.
1088-1980,
8
(
1–2
), pp.
143
172
.
24.
Fava
,
J.
,
Consoli
,
F.
,
Denison
,
R.
,
Dickson
,
K.
,
Mohin
,
T.
, and
Vigon
,
B.
, 1992,
A Conceptual Framework for Life Cycle Impact Assessment
,
SETAC
,
Pensacola, FL
.
25.
Pennington
,
D. W.
, and
Yue
,
P. L.
, 2000, “
Options for Comparison of Process Design Alternatives in Terms of Regional Environmental Impacts
,”
J. Cleaner Prod.
0959-6526,
8
, pp.
1
9
.
26.
Hertwich
,
E. G.
,
Mateles
,
S. F.
,
Pease
,
W. S.
, and
McKone
,
T. E.
, 2001, “
Human Toxicity Potentials for Life-Cycle Assessment and Toxics Release Inventory Risk Screening
,”
Envir. Toxicol. Chem.
0730-7268,
20
(
4
), pp.
928
939
.
27.
Huijbregts
,
M. A. J.
,
Thissen
,
U.
,
Guinée
,
J.
,
Jager
,
T.
,
Kalf
,
D.
,
Meent
,
D.
,
Ragas
,
A. M. J.
,
Sleeswijk
,
A. W.
, and
Reijnders
,
L.
, 2000, “
Priority Assessment of Toxic Substances in Life Cycle Assessment. Part I: Calculation of Toxicity Potentials for 181 Substances With the Nested Multi-Media Fate, Exposure and Effects Model USES-LCA
,”
Chemosphere
0045-6535,
41
(
4
), pp.
541
573
.
28.
Horvath
,
A.
,
Hendrickson
,
C. T.
,
Lave
,
L. B.
,
McMichael
,
F. C.
, and
Wu
,
T. S.
, 1995, “
Toxic Emissions Indices for Green Design and Inventory
,”
Environ. Sci. Technol.
0013-936X,
29
(
2
), pp.
86A
90A
.
29.
Czeskleba-Dupont
,
R.
, 1987, “
A Comparison of Risk Assessments for Chlorinated Dioxings by ADI- Values and by Incremental Cancer Risk Estimates
,”
Chemosphere
0045-6535,
16
(
8–9
), pp.
2141
2146
.
30.
Lu
,
F. C.
, and
Sielken
,
R. L.
, 1991, “
Assessment of Safety/Risk of Chemicals: Inception and Evolution of the ADI and Dose-Response Modeling Procedures
,”
Toxicol. Lett.
0378-4274,
59
, pp.
5
40
.
31.
Crettaz
,
P.
,
Pennington
,
D.
,
Rhomberg
,
L.
,
Brand
,
K.
, and
Jolliet
,
O.
, 2002, “
Assessing Human Health Response in Life Cycle Assessment Using ED10 and DALYs: Part 1—Cancer Effects
,”
Risk Anal.
0272-4332,
22
(
5
), pp.
931
946
.
32.
Pennington
,
D.
,
Crettza
,
P.
,
Tauxe
,
A.
,
Rhomberg
,
L.
,
Brand
,
K.
, and
Jolliet
,
O.
, 2002, “
Assessing Human Health Response in Life Cycle Assessment Using ED10 and DALYs: PART 2—Noncancer Effects
,”
Risk Anal.
0272-4332,
22
(
5
), pp.
947
963
.
33.
McKone
,
T. E.
,
Kyle
,
A. D.
,
Jolliet
,
O.
,
Olsen
,
S. I.
, and
Hauschild
,
M.
, 2006, “
Dose-Response Modeling for Life Cycle Impact Assessment: Findings of the Portland Review Workshop
,”
Int. J. Life Cycle Assess.
0948-3349,
11
(
2
), pp.
137
140
.
34.
Webster
,
E.
,
Mackay
,
D.
, and
Wania
,
F.
, 1998, “
Evaluating Environmental Persistence
,”
Envir. Toxicol. Chem.
0730-7268,
17
, pp.
2148
2158
.
35.
Bennett
,
D. H.
,
Kastenberg
,
W. E.
, and
McKone
,
T. E.
, 1999, “
General Formulation of Characteristic Time for Persistent Chemicals in a Multimedia Environment
,”
Environ. Sci. Technol.
0013-936X,
33
, pp.
503
509
.
36.
Bennett
,
D. H.
,
McKone
,
T. E.
, and
Kastenberg
,
W. E.
, 2000, “
Evaluating Multimedia Chemical Persistence: Classification and Regression Tree Analysis
,”
Envir. Toxicol. Chem.
0730-7268,
19
, pp.
810
819
.
37.
Pennington
,
D. W.
, 2001, “
An Evaluation of Chemical Persistence Screening Approaches
,”
Chemosphere
0045-6535,
44
, pp.
1589
1601
.
38.
MacLeod
,
M.
, and
McKone
,
T.
, 2004, “
Multimedia Persistence as an Indicator of Potential for Population Level Intake of Environmental Contaminants
,”
Envir. Toxicol. Chem.
0730-7268,
23
(
10
), pp.
2465
2472
.
39.
Mackay
,
D.
, and
Webster
,
E.
, 2006, “
Environmental Persistence of Chemicals
,”
Environ. Sci. Pollut. Res.
0944-1344,
13
(
1
), pp.
43
49
.
40.
Stroebe
,
M.
,
Scheringer
,
M.
, and
Hungerbuhler
,
K.
, 2004, “
Measures of Overall Persistence and the Temporal Remote State
,”
Environ. Sci. Technol.
0013-936X,
38
(
21
), pp.
5665
5673
.
41.
Yuan
,
C. Y.
, and
Dornfeld
,
D. A.
, 2009, “
Schematic Characterization of Human Health Impact of Toxic Chemicals for Sustainable Design and Manufacturing
,”
Proceedings of IEEE International Symposium on Sustainable Systems and Technology
, Phoenix, AZ, May 18–20.
42.
McKone
,
T. E.
, and
Enoch
,
K. G.
, 2002, “
CalTOX, a Multimedia Total Exposure Model Version 4.0 (Beta)
,” Lawrence Berkeley National Laboratory, http://eetd.lbl.gov/ied/ERA/http://eetd.lbl.gov/ied/ERA/, accessed on 08/20/09.
43.
Gold
,
L. S.
, 2007, “
The Carcinogenic Potency Database: Tetrachloroethylene
,” http://potency.berkeley.edu/chempages/TETRACHLOROETHYLENE.htmlhttp://potency.berkeley.edu/chempages/TETRACHLOROETHYLENE.html, accessed on 12/15/09.
44.
Gaylor
,
D. W.
,
Chen
,
J. J.
, and
Sheehan
,
D. M.
, 2006, “
Uncertainty in Cancer Risk Estimates
,”
Risk Anal.
0272-4332,
13
, pp.
149
154
.
45.
Baird
,
S. J.
,
Cohen
,
J. T.
,
Graham
,
J. D.
,
Shlyakheter
,
A. I.
, and
Evans
,
J. S.
, 1996, “
Noncancer Risk Assessment: A Probabilistic Alternative to Current Practice
,”
Hum. Ecol. Risk Asses.
1080-7039,
2
, pp.
79
102
.
46.
Yuan
,
Y.
, 2009, “
A System Approach for Reducing the Environmental Impact of Manufacturing and Sustainability Improvement of Nano-Scale Manufacturing
,” Ph.D. thesis, University of California, Berkeley.
You do not currently have access to this content.