Product design is one of the most important sectors influencing global sustainability, as almost all the products consumed by people are outputs of the product development process. In particular, early design decisions can have a very significant impact on sustainability. These decisions not only relate to material and manufacturing choices but have a far-reaching effect on the product’s entire life cycle, including transportation, distribution, and end-of-life logistics. However, key challenges have to be overcome to enable eco-design methods to be applicable in early design stages. Lack of information models, semantic interoperability, methods to influence eco-design thinking in early stages, measurement science and uncertainty models in eco-decisions, and ability to balance business decisions and eco-design methodology are serious impediments to realizing sustainable products and services. Therefore, integrating downstream life cycle data into eco-design tools is essential to achieving true sustainable product development. Our review gives an overview of related research and positions early eco-design tools and decision support as a key strategy for the future. By merging sustainable thinking into traditional design methods, this review provides a framework for ongoing research, as well as encourages research collaborations among the various communities interested in sustainable product realization.

1.
Ayres
,
R. U.
, and
Ayres
,
L. W.
, 2002,
A Handbook of Industrial Ecology
,
Edward Elgar
,
Northampton, MA
.
2.
Choi
,
J. K.
,
Nies
,
L. F.
, and
Ramani
,
K.
, 2008, “
A Framework for the Integration of Environmental and Business Aspects Toward Sustainable Product Development
,”
J. Eng. Design
0954-4828,
19
, pp.
431
446
.
3.
Miheclic
,
J. R.
,
Paterson
,
K. G.
,
Phillips
,
L. D.
,
Zhang
,
Q.
,
Watkins
,
D. W.
,
Barkdoll
,
B. D.
,
Fuchs
,
V. J.
,
Fry
,
L. M.
,
Hokanson
,
D. R.
, and
Ayres
,
L. W.
, 2008,
Educating Engineers in the Sustainable Futures Model With a Global Perspective
,
Taylor & Francis
,
London
.
4.
National Academy of Engineering (NAE)
, 2008, Grand Challenges for Engineering.
5.
Chertow
,
M. R.
, 2000, “
The IPAT Equation and Its Variants: Changing Views of Technology and Environmental Impact
,”
J. Ind. Ecol.
1088-1980,
4
, pp.
13
29
.
7.
EIA
, 2006, 2002 Manufacturing Energy Consumption Survey.
8.
Choi
,
J. -K.
, and
Ramani
,
K.
, 2009,
A Quest for Sustainable Product Design: A Systematic Methodology for Integrated Assessment of Environmentally Benign and Economically Feasible Product Design
,
VDM
,
Saarbrücken, Germany
.
9.
Watson
,
R. T.
,
Albritton
,
D. L.
,
Allen
,
M. R.
,
Baede
,
A. P. M.
,
Church
,
J. A.
,
Cubasch
,
U.
,
Xiaosu
,
D.
,
Yihui
,
D.
,
Ehhalt
,
D. H.
et al.
, 2001, “
A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change
,”
Climate Change 2001: Synthesis Report
,
Cambridge University Press
,
Cambridge, UK
, p.
398
.
11.
EIA
, 2008, International Energy Annual 2006, World Carbon Dioxide Emissions from the Use of Fossil Fuels.
12.
Ullman
,
D. G.
, 1997,
The Mechanical Design Process
,
2nd ed.
,
McGraw-Hill
,
New York
.
13.
Sousa
,
I.
, and
Wallace
,
D.
, 2006, “
Product Classification to Support Approximate Life-Cycle Assessment of Design Concepts
,”
Technol. Forecast. Soc. Change
0040-1625,
73
, pp.
228
249
.
14.
Graedel
,
T. E.
, and
Allenby
,
B. R.
, 2003,
Industrial Ecology
,
2nd ed.
,
Prentice Hall
,
New York
.
15.
Sherwin
,
C.
, and
Bhamra
,
T.
, 1999, “
Beyond Engineering: Ecodesign as A Proactive Approach to Product Innovation
,”
Proceedings of the IEEE International Symposium on Environmentally Conscious Design and Inverse Manufacturing Conference
, Tokyo, Japan, pp.
41
46
.
16.
Charter
,
M.
, 1997, “
Managing the Eco-Design Process
,”
Journal of Sustainable Product Development
,
1
(
2
), pp.
48
51
.
17.
Wukash
,
R. F.
, 1993,
Proceedings of the 48th Industrial Waste Conference
, School of Civil Engineering Continuing Education, Purdue University, May 10, 11, and 12.
18.
Johansson
,
G.
, 2002, “
Success Factors for Integration of Ecodesign in Product Development
,”
Environ. Manage. Health
,
13
(
1
), pp.
98
107
.
19.
ISO
, 2002, TR 14062: Environmental Management—Integrating Environmental Aspects Into Product Design and Development.
20.
Fargnoli
,
M.
, and
Kimura
,
F.
, 2006, “
Sustainable Design of Modern Industrial Products
,”
Proceedings of the 13th CIRP International Conference on Life Cycle Engineering
, pp.
189
194
.
21.
ISO
, 2006, ISO 14040, Environmental Management–Life Cycle Assessment–Principles and Framework.
22.
M. A.
Curran
, 2006, Life Cycle Assessment: Principles and Practice, EPA/600/R-06/060.
23.
Choi
,
J. K.
, and
Ramani
,
K.
, 2009,
A Quest for Sustainable Product Design: A Systematic Methodology for Integrated Assessment of Environmentally Benign and Economically Feasible Product Design
,
VMD
,
Saarbrucken, Germany
.
24.
Todd
,
J. A.
, and
Curran
,
M. A.
, 1999, “
Streamlined Life-Cycle Assessment: A Final Report From the SETAC North America Streamlined LCA Workgroup
,” Society of Environmental Toxicology and Chemistry (SETAC) and SETAC Foundation for Environmental Education.
25.
Koffler
,
C.
,
Krinke
,
S.
,
Schebek
,
L.
, and
Buchgeister
,
J.
, 2008, “
Volkswagen slimLCI: A Procedure for Streamlined Inventory Modeling Within Life Cycle Assessment of Vehicles
,”
Int. J. Veh. Des.
0143-3369,
46
, pp.
172
188
.
26.
Yu
,
S.
,
Kato
,
S.
, and
Kimura
,
F.
, 2001, ”
EcoDesign for Product Variety: A Multi-Objective Optimization Framework
,”
Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing (EcoDesign ’01)
.
27.
Devanathan
,
S.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
, and
Ramani
,
K.
, 2010, “
Integration of Sustainability Into Early Design Through the Function Impact Matrix
,”
ASME J. Mech. Des.
0161-8458, in press.
28.
Luttropp
,
D. C.
, and
Lagerstedt
,
J.
, 2006, “
EcoDesign and the Ten Golden Rules: Generic Advice for Merging Environmental Aspects Into Product Development
,”
J. Cleaner Prod.
0959-6526,
14
, pp.
1396
1408
.
29.
Lee
,
K. M.
, and
Park
,
P. J.
, 2005,
EcoDesign: Best Practice of ISO-14062, Eco-Product Research Institute (ERI)
,
Ajou University
,
Korea
.
30.
Masui
,
K.
,
Sakao
,
T.
,
Kobayashi
,
M.
, and
Inaba
,
A.
, 2003, “
Applying Quality Function Deployment to Environmentally Conscious Design
,”
Int. J. Qual. Reliab. Manage.
0265-671X,
20
, pp.
90
106
.
31.
Bouchereau
,
V.
, and
Rowlands
,
H.
, 2000, “
Methods and Techniques to Help Quality Function Deployment (QFD)
,”
Benchmarking: An International Journal
,
7
(
1
), pp.
8
20
.
32.
Lofthouse
,
V.
, 2006, “
Ecodesign Tools for Designers: Defining the Requirements
,”
J. Cleaner Prod.
0959-6526,
14
, pp.
1386
1395
.
33.
Dewulf
,
W.
,
Willems
,
B.
, and
Duflou
,
J. R.
, 2006, “
Estimating the Environmental Profile of Early Design Concepts
,”
Innovation in Life Cycle Engineering and Sustainable Development
, Part 3, pp.
321
334
.
34.
Robèrt
,
K. -H.
,
Schmidt-Bleek
,
B.
,
de Larderel
,
J. A.
,
Basile
,
G.
,
Jansen
,
J. L.
,
Kuehr
,
R.
,
Thomas
,
P. P.
,
Suzuki
,
M.
,
Hawken
,
P.
, and
Wackernagel
,
M.
, 2002, “
Strategic Sustainable Development—Selection, Design and Synergies of Applied Tools
,”
J. Cleaner Prod.
0959-6526,
10
, pp.
197
214
.
35.
Senthil
,
K.
,
Ong
,
S. K.
,
Nee
,
A. Y. C.
, and
Tab
,
B. H.
, 2003, “
A Proposed Tool to Integrate Environmental and Economical Assessments of Product
,”
Environ. Impact. Asses. Rev.
0195-9255,
23
, pp.
51
72
.
36.
Khan
,
F. I.
,
Sadiq
,
R.
, and
Veitch
,
B.
, 2004, “
Life Cycle iNdeX(LInX): A New Indexing Procedure for Process and Product Design and Decision-Making
,”
J. Cleaner Prod.
0959-6526,
12
, pp.
59
76
.
37.
Thurston
,
D. L.
, and
Srinivasan
,
S.
, 2003, “
Constrained Optimization for Green Engineering Decision-Making
,”
Environ. Sci. Technol.
0013-936X,
37
, pp.
5389
5397
.
38.
Björklund
,
A. E.
, 2002, “
Survey of Approaches to Improve Reliability in LCA
,”
Int. J. Life Cycle Assess.
0948-3349,
7
(
2
), pp.
64
72
.
39.
Shipworth
,
D.
, 2002, “
A Stochastic Framework for Embodied Greenhouse Gas Emissions Modeling for Construction Materials
,”
Build. Res. Inf.
0961-3218,
30
(
1
), pp.
16
24
.
40.
Cash
,
D. W.
, and
Moser
,
S. C.
, 2000, “
Linking Global and Local Scales: Designing Dynamic Assessment and Management Processes
,”
Global Environ. Change
0959-3780,
10
, pp.
109
120
.
41.
Bouman
,
M.
,
Heijungs
,
R.
,
van der Voet
,
E.
, and
Huppes
,
G.
, 2000, “
An Analytical Comparison of SFA, LCA and Partial Equilibrium Models
,”
Ecologic. Econ.
0921-8009,
32
, pp.
195
216
.
42.
Gutowski
,
T.
, 2004, “
Design and Manufacturing for the Environment
,”
Handbook of Mechanical Engineering
,
Springer-Verlag
,
Berlin
.
43.
Skerlos
,
S. J.
,
Adriaens
,
P.
,
Hayes
,
K.
,
Zimmerman
,
J.
, and
Zhao
,
F.
, 2004, “
Ecological Material and Green Manufacturing: Design and Technology for Metalworking Fluid Systems
,”
Proceedings of the World Engineering Congress
, Shanghai, China, Nov. 2–6.
44.
Zhao
,
F.
,
Naik
,
G.
, and
Zhang
,
L.
, 2009, “
Environmental Sustainability of Laser-Assisted Manufacturing: Case Studies on Laser Shock Peening and Laser Assisted Turning
,”
2009 International Manufacturing Science and Engineering Conference
, West Lafayette, IN, Oct. 4–7.
45.
Denkena
,
B.
,
Shpitalni
,
M.
,
Kowalski
,
P.
,
Molcho
,
Z.
, and
Zipori
,
Y.
, 2007, “
Knowledge Management in Process Planning
,”
CIRP Ann.
0007-8506,
56
(
1
), pp.
175
180
.
46.
Gutowski
,
T.
,
Murphy
,
C.
,
Allen
,
D.
,
Bauer
,
D.
,
Bras
,
B.
,
Piwonka
,
T.
,
Sheng
,
P.
,
Sutherland
,
J.
,
Thurston
,
D.
, and
Wolff
,
E.
, 2005, “
Environmentally Benign Manufacturing: Observations From Japan, Europe, and the United States
,”
J. Cleaner Prod.
0959-6526,
13
, pp.
1
17
.
47.
Tan
,
X. C.
,
Liu
,
F.
,
Liu
,
D. C.
,
Zheng
,
L.
,
Wang
,
H. Y.
, and
Zhang
,
Y. H.
, 2007, “
Research on the Diagnosis and Improvement Method of a Process Route in an Enterprise Production Process in Terms of Sustainable Development
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
33
, pp.
1256
1262
.
48.
Mouzon
,
G.
,
Yildirim
,
M. B.
, and
Twomey
,
J.
, 2007, “
Operational Methods for Minimization of Energy Consumption of Manufacturing Equipment
,”
Int. J. Prod. Res.
0020-7543,
45
, pp.
4247
4271
.
49.
Srinivasan
,
M.
, and
Sheng
,
P.
, 1999, “
Feature Based Process Planning in Environmentally Conscious Machining
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
15
, pp.
271
281
.
50.
Gupta
,
S.
, and
Okudan
,
G. E.
, 2008, “
Computer-Aided Generation of Modularised Conceptual Designs With Assembly and Variety Considerations
,”
J. Eng. Design
0954-4828,
19
(
6
), pp.
533
551
.
51.
Caputo
,
A. C.
, and
Pelagagge
,
P. M.
, 2008, “
Effects of Product Design on Assembly Lines Performances
,”
Ind. Manage. Data Syst.
,
108
(
6
), pp.
726
749
.
52.
Ferrer
,
I.
,
Rios
,
J.
, and
Ciurana
,
J.
, 2009, “
An Approach to Integrate Manufacturing Process Information in Part Design Phases
,”
J. Mater. Process. Technol.
0924-0136,
209
(
4
), pp.
2085
2091
.
53.
Shercliff
,
H. R.
, and
Lovatt
,
A. M.
, 2001, “
Selection of Manufacturing Processes in Design and the Role of Process Modelling
,”
Prog. Mater. Sci.
0079-6425,
46
(
3–4
), pp.
429
459
.
54.
Feng
,
S. C.
, and
Song
,
E. Y.
, 2000, “
Information Modeling of Conceptual Design Integrated With Process Planning
,”
Proceedings of the Symposia on Design for Manufacturability, the 2000 International Mechanical Engineering Congress and Exposition
, Orlando, FL, Nov. 5–10.
55.
Altintas
,
Y.
, and
Cao
,
Y.
, 2005, “
Virtual Design and Optimization of Machine Tool Spindles
,”
CIRP Ann.
0007-8506,
54
(
1
), pp.
379
382
.
56.
Su
,
Q.
, 2007, “
Computer Aided Geometric Feasible Assembly Sequence Planning and Optimizing
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
33
(
1–2
), pp.
48
57
.
57.
Selvaraj
,
P.
,
Radhakrishnan
,
P.
, and
Adithan
,
M.
, 2009, “
An Integrated Approach to Design for Manufacturing and Assembly Based on Reduction of Product Development Time and Cost
,”
The International Journal of Advanced Manufacturing Technology
,
42
(
1-2
), pp.
13
29
.
58.
Giudice
,
F.
,
Balisteri
,
F.
, and
Risitano
,
G.
, 2009, “
A Concurrent Design Method Based on DFMA–FEA Integrated Approach
,”
Concurr. Eng. Res. Appl.
1063-293X,
17
(
3
), pp.
183
202
.
59.
Wu
,
C. H.
,
Xie
,
Y. J.
, and
Mok
,
S. M.
, 2007, “
Linking Product Design in CAD With Assembly Operations in CAM for Virtual Product Assembly
,”
Assem. Autom.
0144-5154,
27
(
4
), pp.
309
323
.
60.
Swift
,
K. G.
, and
Booker
,
J. D.
, 2003,
Process Selection: From Design to Manufacture
,
Butterworth Heinemann
,
Oxford, UK
, pp.
1
13
.
61.
Dantan
,
J. Y.
,
Hassan
,
A.
,
Etienne
,
A.
,
Siadat
,
A.
, and
Martin
,
P.
, 2008, “
Information Modeling for Variation Management During the Product and Manufacturing Process Design
,”
Int J Interact Des Manuf
,
2
(
2
), pp.
107
118
.
62.
Yim
,
S.
, and
Rosen
,
D. W.
, 2008, “
A Repository for DFM Problems Using Description Logics
,”
Int. J. Manuf. Technol. Manage.
1368-2148,
19
(
6
), pp.
755
774
.
63.
Chang
,
X. M.
,
Rai
,
R.
, and
Terpenny
,
J.
, 2010, “
Development and Utilization of Ontologies in Design for Manufacturing
,”
ASME J. Mech. Des.
0161-8458,
132
, p.
021009
.
64.
Wang
,
H. X.
, and
Ceglarek
,
D.
, 2009, “
Variation Propagation Modeling and Analysis at Preliminary Design Phase of Multi-Station Assembly Systems
,”
Assem. Autom.
0144-5154,
29
(
2
), pp.
154
166
.
65.
Pham
,
D. T.
,
Pham
,
P. T. N.
, and
Thomas
,
A.
, 2008, “
Integrated Production Machines and Systems—Beyond Lean Manufacturing
,”
Int. J. Manuf. Technol. Manage.
1368-2148,
19
(
6
), pp.
695
711
.
66.
Askin
,
R. G.
, and
Goldberg
,
J. B.
, 2002,
Design and Analysis of Lean Production Systems
,
Wiley
,
New York
.
67.
Sonnemann
,
G.
,
Castells
,
F.
, and
Schuhmacher
,
M.
, 2004,
Integrated Life-Cycle and Risk Assessment for Industrial Processes
,
CRC
,
Boca Raton, FL
.
68.
Boons
,
F.
, 2002, “
Greening Products: A Framework for Product Chain Management
,”
J. Cleaner Prod.
0959-6526,
10
, pp.
495
505
.
69.
Seuring
,
S.
, and
Muller
,
M.
, 2008, “
From a Literature Review to a Conceptual Framework for Sustainable Supply Chain Management
,”
J. Cleaner Prod.
0959-6526,
16
, pp.
1699
1710
.
70.
Zhu
,
Q. H.
,
Sarkis
,
J.
, and
Lai
,
K. H.
, 2008, “
Confirmation of a Measurement Model for Green Supply Chain Management Practices Implementation
,”
Int. J. Prod. Econ.
0925-5273,
111
, pp.
261
273
.
71.
Dolgui
,
A.
,
Soldek
,
J.
, and
Zaikin
,
O.
, 2005,
Supply Chain Optimization Product/Process Design, Facility Location and Flow Control
,
Springer
,
Boston
, p.
94
.
72.
Demirel
,
N.
, and
Gökçen
,
H.
, 2008, “
A Mixed Integer Programming Model for Remanufacturing in Reverse Logistics Environment
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
39
, pp.
1197
1206
.
73.
Neto
,
J. Q. F.
,
Bloemhof-Ruwaard
,
J. M.
,
van Nuner
,
J. A. E. E.
, and
van Heck
,
E.
, 2008, “
Designing and Evaluating Sustainable Logistics Networks
,”
Int. J. Prod. Econ.
0925-5273,
111
, pp.
195
208
.
74.
Sarkis
,
J.
, 2003, “
A Strategic Decision Making Framework for Green Supply Chain Management
,”
J. Cleaner Prod.
0959-6526,
11
, pp.
397
409
.
75.
Sheu
,
J. B.
,
Chou
,
Y. H.
, and
Hu
,
J. J.
, 2005, “
An Integrated Logistics Operational Model for Green Supply Chain Management
,”
Transp. Res., Part E Logist. Trans. Rev.
,
41
, pp.
287
313
.
76.
Mangun
,
D.
, and
Thurston
,
D. L.
, 2002, “
Incorporating Component Reuse, Remanufacture and Recycle Into Product Portfolio Design
,”
IEEE Trans. Eng. Manage.
0018-9391,
49
(
4
), pp.
479
490
.
77.
Mutha
,
A.
, and
Pokharel
,
S.
, 2009, “
Strategic Network Design for Reverse Logistics and Remanufacturing Using New and Old Product Modules
,”
Comput. Ind. Eng.
0360-8352,
56
(
1
), pp.
334
346
.
78.
Aoyama
,
K.
, and
Koga
,
T.
, 2006, “
Latest Trends for Design for Environment (DfE)
,”
Science of Machine
,
58
, pp.
460
467
.
79.
Thomas
,
V.
, 2003, “
Demand and Dematerialization Impacts of Second-Hand Markets
,”
J. Ind. Ecol.
1088-1980,
7
(
2
), pp.
65
78
.
80.
Guide
,
V. D. R.
, and
Wassenhove
,
L. N. V.
, 2006, “
Closed-Loop Supply Chains: An Introduction to the Feature Issue
,”
Production and Operations Management
,
15
(
3
), pp.
345
350
.
81.
Simon
,
M.
,
Bee
,
G.
,
Moore
,
P.
,
Pu
,
J.
, and
Xie
,
C.
, 2001, “
Modeling of the Life Cycle of Products With Data Acquisition Features
,”
Comput. Ind.
,
45
, pp.
111
122
.
82.
Gehin
,
A.
,
Zwolinski
,
P.
, and
Brissaud
,
D.
, 2007, “
Towards the Use of LCA During the Early Design Phase to Define EoL Scenarios
,”
Advances in Life Cycle Engineering for Sustainable Manufacturing Businesses, Part 2, A1, pp. 23–28. Proceedings of the 14th CIRP Conference on Life Cycle Engineering, Waseda University, Tokyo, Japan, June 11–13, 2007
.
83.
Walmart, 2009, “
Sustainability Product Index: Fact Sheet
,” http://walmartstores.com/download/3879.pdfhttp://walmartstores.com/download/3879.pdf
84.
Ginsberg
,
J. M.
, and
Bloom
,
P. N.
, 2004, “
Choosing the Right Green Marketing Strategy
,”
Sloan Manage. Rev.
0019-848X,
46
, pp.
79
84
.
85.
Thomas
,
V.
, 2009, “
A Universal Code for Environmental Management of Products
,”
Resour. Conserv. Recycl.
0921-3449,
53
, pp.
400
408
.
86.
Krikke
,
H.
,
Bloemhof-Ruwaard
,
J.
, and
Van Wassenhove
,
L. N.
, 2003, “
Concurrent Product and Closed-Loop Supply Chain Design With an Application to Refrigerators
,”
Int. J. Prod. Res.
0020-7543,
41
(
16
), pp.
3689
3719
.
87.
Komoto
,
H.
,
Tomiyama
,
T.
,
Silvester
,
S.
, and
Brezet
,
H.
, 2009, “Analyzing Supply Chain Robustness for OEMs From a Life Cycle Perspective Using Life Cycle |Simulation,” Int. J. Prod. Econ. 0925-5273, in press.
88.
Lily
,
A.
,
Dzuraidah
,
A. W.
,
Che Hassan
,
C. H.
, and
Che Husna
,
A.
, 2009, “
Development of an Optimisation Model for Automotive Component Reuse
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
3
(
1
), pp.
87
96
.
89.
Kumazawa
,
T.
, and
Kobayashi
,
H.
, 2006, “
A Simulation System to Support the Establishment of Circulated Business
,”
Adv. Eng. Inf.
1474-0346,
20
, pp.
127
136
.
90.
White
,
C.
,
Masanet
,
E.
,
Rosen
,
C.
, and
Beckman
,
S.
, 2003, “
Product Recovery With Some Byte: An Overview of Management Challenges and Environmental Consequences in Reverse Manufacturing for the Computer Industry
,”
J. Cleaner Prod.
0959-6526,
11
, pp.
445
458
.
91.
Rose
,
C. M.
,
Kurt
,
A. B.
, and
Kosuke
,
I.
, 1999, “
Determining End-of-Life Strategies as a Part of Product Definition, ISEE –1999
,”
Proceedings of the 1999 IEEE International Symposium on Electronics and the Environment
, pp.
219
224
.
92.
Ishii
,
K.
, and
Lee
,
B.
, 1996, “
Reverse Fishbone Diagram: A Tool in Aid of Design for Product Retirement
,”
Proceedings of the 1996 ASME Design Technical Conference
.
93.
Penev
,
K. D.
, and
De Ron
,
A. J.
, 1996, “
Determination of a Disassembly Strategy
,”
Int. J. Prod. Res.
0020-7543,
34
(
2
), pp.
495
506
.
94.
Pnueli
,
Y.
, and
Zussman
,
E.
, 1997, “
Evaluating the End-of-Life Value of a Product and Improving It by Redesign
,”
Int. J. Prod. Res.
0020-7543,
35
(
4
), pp.
921
942
.
95.
Kwak
,
M. J.
,
Hong
,
Y. S.
, and
Cho
,
N. W.
, 2009, “
Eco-Architecture Analysis for End-of-Life Decision Making
,”
Int. J. Prod. Res.
0020-7543,
47
(
22
), pp.
6233
6259
.
96.
Krikke
,
H. R.
,
van Harten
,
A.
, and
Schuur
,
P. C.
, 1998, “
On a Medium Term Product Recovery and Disposal Strategy for Durable Assembly Products
,”
Int. J. Prod. Res.
0020-7543,
36
, pp.
111
140
.
97.
González
,
B.
, and
Adenso-Díaz
,
B.
, 2005, “
A Bill of Materials-Based Approach for EOL Decision Making in Design for the Environment
,”
Int. J. Prod. Res.
0020-7543,
43
, pp.
2071
2099
.
98.
Jayaraman
,
V.
, 2006, “
Production Planning for Closed-Loop Supply Chains With Product Recovery and Reuse: An Analytical Approach
,”
Int. J. Prod. Res.
0020-7543,
44
(
5
), pp.
981
998
.
99.
Franke
,
C.
,
Basdere
,
B.
,
Ciupek
,
M.
, and
Seliger
,
S.
, 2006, “
Remanufacturing of Mobile Phones-Capacity, Program and Facility Adaptation Planning
,”
Omega
0305-0483,
34
(
6
), pp.
562
570
.
100.
Behdad
,
S.
,
Kim
,
H.
, and
Thurston
,
D.
, 2010, “
Simultaneous Selective Disassembly and End-of-Life Decision Making for Multiple Products That Share Disassembly Operations
,”
ASME J. Mech. Des.
0161-8458,
132
(
4
), p.
041002
.
101.
Zhao
,
Y.
,
Pandey
,
V.
,
Kim
,
H.
, and
Thurston
,
D.
, 2009, “
Varying Lifecycle Lengths Within a Portfolio for Product Takeback
,”
ASME International Design Engineering Technical Conferences on Design for Manufacturing and Lifecycle
, San Diego, CA.
102.
Marks
,
M. D.
,
Eubanks
,
C. F.
, and
Ishii
,
K.
, 1993, “
Life-Cycle Clumping of Product Designs for Ownership and Retirement
,”
ASME Design Theory and Methodology
, Albuquerque, NM, pp.
83
90
.
103.
Ishii
,
K.
,
Eubanks
,
C. H.
, and
Di Marco
,
P.
, 1994, “
Design for Product Retirement and Material Life-Cycle
,”
Mater. Des.
0264-1275,
15
(
4
), pp.
225
233
.
104.
Feldmann
,
K.
,
Traunter
,
S.
,
Lohrmann
,
H.
, and
Melzer
,
K.
, 2001, “
Computer-Based Product Structure Analysis for Technical Goods Regarding Optimal End-of-Life Strategies
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
215
(
5
), pp.
683
693
.
105.
Qian
,
X.
, and
Zhang
,
H. C.
, 2003, “
Design for Environment: An Environmental Analysis Model for the Modular Design of Products
,”
Proceedings of the 2003 IEEE International Symposium on Electronics and the Environment
, Boston, pp.
114
119
.
106.
Gu
,
P.
, and
Sosale
,
S.
, 1999, “
Product Modularization for Life Cycle Engineering
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
15
(
5
), pp.
387
401
.
107.
Sand
,
J. C.
,
Gu
,
P.
, and
Watson
,
G.
, 2002, “
HOME: House of Modular Enhancement—A Tool for Modular Product Redesign
,”
Concurr. Eng. Res. Appl.
1063-293X,
10
(
2
), pp.
153
164
.
108.
Seliger
,
G.
, and
Zettl
,
M.
, 2008, “
Modularization as an Enabler for Cycle Economy
,”
CIRP Ann.
0007-8506,
57
(
1
), pp.
133
136
.
109.
Umeda
,
Y.
,
Fukushige
,
S.
,
Tonoike
,
K.
, and
Kondoh
,
S.
, 2008, “
Product Modularity for Life Cycle Design
,”
CIRP Ann.
0007-8506,
57
(
1
), pp.
13
16
.
110.
Simpson
,
T.
, 1998, “
A Concept Exploration Method for Product Family Design
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
111.
Perera
,
H. S.
,
Nagarur
,
N.
, and
Tabucanon
,
M. T.
, 1999, “
Component Part Standardization: A Way to Reduce the Life-Cycle Costs of Products
,”
Int. J. Prod. Econ.
0925-5273,
60–61
, pp.
109
116
.
112.
Bras
,
B.
, 2007, “
Design for Remanufacturing Processes
,”
Environmentally Conscious Mechanical Design
,
M.
Kutz
, ed.,
Wiley
,
Hoboken, NJ
, pp.
283
318
.
113.
Guide
,
V. D. R.
, 2000, “
Production Planning and Control for Remanufacturing: Industry Practice and Research Needs
,”
J. Operations Manage.
0272-6963,
18
(
4
), pp.
467
483
.
114.
Guide
,
V. D. R.
, 2001, “
Managing Product Returns for Remanufacturing
,”
Prod. Oper. Manage.
1059-1478,
10
(
2
), pp.
142
155
.
115.
Guide
,
V. D. R.
,
Teunter
,
R. H.
, and
Van Wassenhove
,
L. N.
, 2003, “
Matching Demand and Supply to Maximize Profits From Remanufacturing
,”
Manuf. Serv. Oper. Manage.
1523-4614,
5
(
4
), pp.
303
316
.
116.
Ray
,
S.
,
Boyaci
,
T.
, and
Aras
,
N.
, 2005, “
Optimal Prices and Trade-in Rebates for Durable, Remanufacturable Products
,”
Manuf. Serv. Oper. Manage.
1523-4614,
7
(
3
), pp.
208
228
.
117.
Marks
,
D. H.
, 1969, “
Facility Location and Routing Models on Solid Waste Collection Systems
, Ph.D. thesis, Johns Hopkins University, Baltimore.
118.
Gottinger
,
H. W.
, 1988, “
A Computational Model for Solid Waste Management With Application
,”
Eur. J. Oper. Res.
0377-2217,
35
(
3
), pp.
350
364
.
119.
Ossenbruggen
,
P. J.
, and
Ossenbruggen
,
P. C.
, 1992, “
SWAP, a Computer Package for Solid Waste Management
,”
Comput. Environ. Urban Syst.
0198-9715,
16
(
2
), pp.
83
100
.
120.
Fleischmann
,
M.
,
Krikke
,
H. R.
,
Dekker
,
R.
, and
Flapper
,
S. D. P.
, 2000, “
A Characterisation of Logistics Networks for Product Recovery
,”
Omega
0305-0483,
28
(
6
), pp.
653
666
.
121.
Bloemhof-Ruwaard
,
J. M.
,
Van Wassenhove
,
L. N.
,
Gabel
,
H. L.
, and
Weaver
,
P. M.
, 1996, “
An Environmental Life Cycle Optimization Model for the European Pulp and Paper Industry
,”
Omega
0305-0483,
24
(
6
), pp.
615
629
.
122.
Daniel
,
S. E.
,
Voutsinas
,
T. G.
, and
Pappis
,
C. P.
, 1999, “
Implementation of Life Cycle Analysis in the Starter Batteries’ Reverse Chain
,” University of Piraeus.
123.
Taleb
,
K.
, and
Gupta
,
S.
, 1997, “
Disassembly of Multiple Product Structures
,”
Comput. Ind. Eng.
0360-8352,
32
(
4
), pp.
949
961
.
124.
Meacham
,
A.
,
Uzsoy
,
R.
, and
Venkatadri
,
U.
, 1999, “
Optimal Disassembly Configurations for Single and Multiple Products
,”
J. Manuf. Syst.
0278-6125,
18
(
5
), pp.
311
322
.
125.
Ferrer
,
G.
, and
Whybark
,
D. C.
, 2001, “
Material Planning for a Remanufacturing Facility
,”
Prod. Oper. Manage.
1059-1478,
10
(
2
), pp.
112
124
.
126.
Imtanavanich
,
P.
, and
Gupta
,
S. M.
, 2005, “
Multi-Criteria Decision Making Approach in Multiple Periods for a Disassembly-to-Order System Under Product’s Deterioration and Stochastic Yields
,”
Proceedings of the SPIE International Conference on Environmentally Conscious Manufacturing V
, pp.
10
21
.
127.
Inderfurth
,
K.
, and
Langella
,
I. M.
, 2008, “
Planning Disassembly for Remanufacture-to-Order Systems
,”
Environment Conscious Manufacturing
,
S. M.
Gupta
and
A. J.
Lamber
, eds.,
CRC
,
Boca Raton, FL
, pp.
387
411
.
128.
Dowie
,
T.
, and
Kelly
,
P.
, 1994, “
Estimation of Disassembly Times
, Manchester Metropolitan University, Technical Report.
129.
Kroll
,
E.
, and
Carver
,
B. S.
, 1999, “
Disassembly Analysis Through Time Estimation and Other Metrics
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
15
(
3
), pp.
191
200
.
130.
Das
,
S. K.
,
Yedlarajiah
,
P.
, and
Narendra
,
R.
, 2000, “
An Approach for Estimating the EOL Product Disassembly Effort and Cost
,”
Int. J. Prod. Res.
0020-7543,
38
(
3
), pp.
657
673
.
131.
Sodhi
,
R.
,
Sonnenberg
,
M.
, and
Das
,
S.
, 2004, “
Evaluating the Unfastening Effort in Design for Disassembly and Serviceability
,”
J. Eng. Design
0954-4828,
15
(
1
), pp.
69
90
.
132.
Gungor
,
A.
, 2006, “
Evaluation of Connection Types in Design for Disassembly (DFD) Using Analytic Network Process
,”
Comput. Ind. Eng.
0360-8352,
50
(
1–2
), pp.
35
54
.
133.
Chiodo
,
J.
,
Billet
,
E.
, and
Harrison
,
D.
, 1998, “Active Disassembly,” The Journal of Sustainable Product Design, Issue 7, pp. 30–36.
134.
Takeuchi
,
S.
, and
Saitou
,
K.
, 2005, “
Design for Product-Embedded Disassembly
,”
Proceedings of ASME 2005 International Design Engineering Technical Conferences
, Long Beach, CA.
135.
Carrell
,
J.
, 2009, “
Design and Analysis of Shape Memory Polymer snap-Fits for Active Disassembly
,” MS thesis, Texas Tech University, Lubbock, TX.
136.
Hussein
,
H.
, and
Harrison
,
D.
, 2008, “
New Technologies for Active Disassembly: Using the Shape Memory Effect in Engineering Polymers
,”
Int. J. Prod. Dev.
,
6
(
3/4
), pp.
431
449
.
137.
Shalaby
,
M.
, and
Saitou
,
K.
, 2008, “
Design for Disassembly With High-Stiffness Heat-Reversible Locator-Snap Systems
,”
ASME J. Mech. Des.
0161-8458,
130
(
12
), p.
121701
.
138.
Hammond
,
R.
, and
Bras
,
B. A.
, 1996, “
Design for Remanufacturing Metrics
,”
Proceedings of the First International Workshop on Reuse
,
S. D.
Flapper
and
A. J.
de Ron
, eds., Eindhoven, The Netherlands, Nov. 11–13, pp.
5
22
.
139.
Kimura
,
F.
,
Kato
,
S.
,
Hata
,
T.
, and
Masuda
,
T.
, 2001, “
Product Modularization for Parts Reuse in Inverse Manufacturing
,”
CIRP Ann.
0007-8506,
50
(
1
), pp.
89
92
.
140.
Meehan
,
J. S.
,
Duffy
,
A. H. B.
, and
Whitfield
,
R. I.
, 2007, “
Supporting ‘Design for Re-use’ With Modular Design
,”
Concurr. Eng. Res. Appl.
1063-293X,
15
(
2
), pp.
141
155
.
141.
King
,
A. M.
, and
Burgess
,
S. C.
, 2005, “
The Development of a Remanufacturing Platform Design: A Strategic Response to the Directive on Waste Electrical and Electronic Equipment
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
219
(
8
), pp.
623
631
.
142.
Seliger
,
G.
,
Skerlos
,
S. J.
,
Basdere
,
B.
, and
Zettl
,
M.
, 2003, “
Design of a Modular Housing Platform for Remanufacturing of Multiple Cellular Phone Models
,”
Proceedings of the EcoDesign
, Tokyo, Japan, pp.
243
250
.
143.
Xing
,
K.
,
Belusko
,
M.
,
Luong
,
L.
, and
Abhary
,
K.
, 2007, “
An Evaluation Model of Product Upgradeability for Remanufacture
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
35
(
1–2
), pp.
1
14
.
144.
Umeda
,
Y.
,
Kondoh
,
S.
,
Shimomura
,
Y.
, and
Tomiyama
,
T.
, 2005, “
Development of Design Methodology for Upgradable Products Based on Function-Behavior-State Modeling
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
19
(
3
), pp.
161
192
.
145.
Willems
,
B.
,
Dewulf
,
W.
, and
Duflou
,
J. R.
, 2008, “
A Method to Assess the Lifetime Prolongation Capabilities of Products
,”
International Journal of Sustainable Manufacturing
,
1
(
1/2
), pp.
122
144
.
146.
Kasarda
,
M. E.
,
Terpenny
,
J. P.
,
Inman
,
D.
,
Precoda
,
K. R.
,
Jelesko
,
J.
,
Shin
,
A.
, and
Park
,
J.
, 2007, “
Design for Adaptability (DFAD)—A New Concept for Achieving Sustainable Design
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
23
(
6
), pp.
727
734
.
147.
Weaver
,
P. M.
,
Ashby
,
M. F.
,
Burgess
,
S.
, and
Shibaike
,
N.
, 1996, “
Selection of Materials to Reduce Environmental Impact: A Case Study on Refrigerator Insulation
,”
Mater. Des.
0264-1275,
17
(
1
), pp.
11
17
.
148.
Giudice
,
F.
,
La Rosa
,
G.
, and
Risitano
,
A.
, 2005, “
Materials Selection in the Life-Cycle Design Process: A Method to Integrate Mechanical and Environmental Performances in Optimal Choice
,”
Mater. Des.
0264-1275,
26
(
1
), pp.
9
20
.
149.
Chan
,
J. W. K.
, and
Tong
,
T. K. L.
, 2007, “
Multi-Criteria Material Selections and End-of-Life Product Strategy: Grey Relational Analysis Approach
,”
Mater. Des.
0264-1275,
28
(
5
), pp.
1539
1546
.
150.
Williams
,
A.
, 2007, “
Product Service Systems in the Automobile Industry: Contribution to System Innovation?
,”
J. Cleaner Prod.
0959-6526,
15
(
11–12
), pp.
1093
1103
.
151.
Mat Saman
,
M. Z.
,
Blount
,
G.
,
Jones
,
R.
,
Goodyer
,
J.
, and
Jawaid
,
A.
, 2005, “
Methodology for the Design Recyclability Assessment in Automotive Engineering
,”
Proceedings of the Fourth International Conference on Design and Manufacture for Sustainable Development
, UK.
152.
Gutowski
,
T. G.
, and
Dahmus
,
J. B.
, 2005, “
Mixing Entropy and Product Recycling
,”
Electronics and the Environment, Proceedings of the IEEE International Symposium on Electronics and the Environment
, pp.
72
76
.
153.
Choi
,
J. -K.
,
Stuart
,
J. A.
, and
Ramani
,
K.
, 2005, “
Modeling of Automotive Recycling Planning in the United States
,”
International Journal of Automotive technology
,
6
(
4
), pp.
413
419
.
154.
Sodhi
,
M. S.
, and
Reimer
,
B.
, 2001, “
Models for Recycling Electronics End-of-Life Products
,”
OR-Spectrum
,
23
(
1
), pp.
97
115
.
155.
Spengler
,
T.
,
Ploong
,
M.
, and
Schroter
,
M.
, 2003, “
Integrated Planning of Acquisition, Disassembly and Bulk Recycling: A Case Study on Electronic Scrap Recovery
,”
Operations Research Spectrum
,
25
(
3
), pp.
413
442
.
156.
Yu-yan
,
W.
, 2009, “
The Choice of Different Takeback Models in CLSC
,”
IEEE International Symposium on Intelligent Information Technology Application Workshops
, pp.
324
327
.
157.
Jacobsson
,
N.
, 2000, “
Emerging Product Strategies: Selling Services of Remanufactured Products
,” Ph.D. thesis, Lund University, Sweden.
158.
Geyer
,
R.
,
Wassenhove
,
L. N. V.
, and
Atasu
,
A.
, 2007, “
The Economics of Remanufacturing Under Limited Component Durability and Finite Product Life Cycles
,”
Manage. Sci.
0025-1909,
53
(
1
), pp.
88
100
.
159.
Majumder
,
P.
, and
Groenevelt
,
H.
, 2001, “
Competition in Remanufacturing
,”
Prod. Oper. Manage.
1059-1478,
10
(
2
), pp.
125
141
.
160.
Ferrer
,
G.
, and
Swaminathan
,
J. M.
, 2006, “
Managing New and Remanufactured Products
,”
Manage. Sci.
0025-1909,
52
(
1
), pp.
15
26
.
161.
Jung
,
K. S.
, and
Hwang
,
H.
, 2009, “Competition and Cooperation in a Remanufacturing System With Take-Back Requirement,” J. Intell. Manuf., pp. 1–7.
162.
Mitra
,
S.
, and
Webster
,
S.
, 2008, “
Competition in Remanufacturing and the Effects of Government Subsidies
,”
Int. J. Prod. Econ.
0925-5273,
111
(
2
), pp.
287
298
.
163.
Atasu
,
A.
,
Sarvary
,
M.
, and
Wassenhove
,
L. N. V.
, 2008, “
Remanufacturing as a Marketing Strategy
,”
Manage. Sci.
0025-1909,
54
(
10
), pp.
1731
1746
.
164.
Heese
,
H. S.
,
Cattani
,
K.
,
Ferrer
,
G.
,
Gilland
,
W.
, and
Roth
,
A. V.
, 2005, “
Competitive Advantage Through Take-Back of Used Products
,”
Eur. J. Oper. Res.
0377-2217,
164
(
1
), pp.
143
157
.
165.
Kwak
,
M.
, and
Kim
,
H.
, 2010, “
Evaluating End-of-Life Recovery Profit by a Simultaneous Consideration of Product Design and Recovery Network Design
,”
ASME J. Mech. Des.
0161-8458,
132
(
7
), p.
071001
.
166.
Willems
,
B.
,
Dequlf
,
W.
, and
Duflou
,
J. R.
, 2006, “
Can Large-Scale Disassembly be Profitable? A Linear Programming Approach to Quantifying the Turning Point to Make Disassembly Economically Viable
,”
Int. J. Prod. Res.
0020-7543,
44
, pp.
1125
1146
.
167.
Skerlos
,
S. J.
,
Morrow
,
W. R.
,
Chan
,
K. -Y.
,
Zhao
,
F.
,
Hula
,
A.
,
Seliger
,
G.
,
Basdere
,
B.
, and
Prasitnarit
,
A.
, 2003, “
Economic and Environmental Characteristics of Global Cellular Telephone Remanufacturing
,”
IEEE International Symposium on Electronics and the Environment
, Boston, MA, May 19–22.
168.
Manzini
,
E.
, and
Vezzoli
,
C.
, 2003, “
A Strategic Design Approach to Develop Sustainable Product Service Systems: Examples Taken From the ‘Environmentally Friendly Innovation’ Italian Prize
,”
J. Cleaner Prod.
0959-6526,
11
, pp.
851
857
.
169.
Gray
,
C.
, and
Charter
,
M.
, 2007, “
Remanufacturing and Product Design, Designing for the Seventh Generation
,” The Centre for Sustainable Design, University College for the Creative Arts, Report.
170.
Sundin
,
E.
, 2004, “
Product and Process Design for Successful Remanufacturing
,” Ph.D. thesis, Linkoping University, Sweden.
171.
Ostlin
,
J.
,
Sundin
,
E.
, and
Bjorkman
,
M.
, 2008, “
Importance of Closed-Loop Supply Chain Relationships for Product Remanufacturing
,”
Int. J. Prod. Econ.
0925-5273,
115
, pp.
336
348
.
172.
Hammond
,
R.
,
Amezquita
,
T.
, and
Bras
,
B.
, 1998, “
Issues in the Automotive Parts Remanufacturing Industry—A Discussion of Results From Surveys Performed Among Remanufacturers
,”
International Journal of Engineering Design and Automation
, Special Issue on Environmentally Conscious Design and Manufacturing,
4
(
1
), pp.
27
46
.
173.
Murugappan
,
S.
, and
Ramani
,
K.
, 2009, “
FEAsy: A Sketch-Based Interface Integrating Structural Analysis in Early Design
,”
Proceedings of the ASME 2009 International Design Engineering Technical Conference and Computers and Information in Engineering Conference IDETC/CIE
.
174.
Lockton
,
D.
, 2007, “
Design With Intent: Using Design to Influence Behavior
,” http://architectures.danlockton.co.uk/what-is-design-with-intent/http://architectures.danlockton.co.uk/what-is-design-with-intent/, accessed February.
175.
NIST
, 2009, “
Sustainable and Lifecycle Information-Based Manufacturing
,” Manufacturing Systems Integration Division, Manufacturing Engineering Laboratory, http://www.nist.gov/mel/msid/dpg/slim.cfmhttp://www.nist.gov/mel/msid/dpg/slim.cfm, accessed Jul. 8.
176.
Daniel
,
V.
,
Guide
,
J. R.
, and
Pentico
,
D. W.
, 2003, “
A Hierarchical Decision Model for Re-Manufacturing and Re-Use
,”
International Journal of Logistics: Research and Applications
,
6
(
1–2
), pp.
29
35
.
177.
Simon
,
M.
, and
Dowie
,
T.
, 1993, “
Disassembly Process Planning
,” Presented at the
30th International MATADOR Conference
, Manchester, UK.
178.
Gungor
,
A.
, and
Gupta
,
S. M.
, 1998, “
Disassembly Sequence Planning for Complete Disassembly in Product Recovery
,”
Proceedings of the 1998 Northeast Decision Sciences Institute Conference
, Boston, MA, Mar. 25–27, pp.
250
252
.
179.
Coulter
,
S. L.
, and
Bras
,
B. A.
, 1997, “
Reducing Environmental Impact Through Systematic Product Evolution
,”
International Journal of Environmentally Conscious Design and Manufacturing
,
6
(
2
), pp.
1
10
.
180.
Coulter
,
S. L.
,
Bras
,
B. A.
,
Winslow
,
G.
, and
Yester
,
S.
, 1996, “
Designing for Material Separation: Lessons From Automotive Recycling
,”
Proceedings of the ASME Design Engineering Technical Conference and Computers in Engineering Conference
, Irvine, CA, Aug. 18–22, Paper No. 96-DETC/DFM-1270.
181.
Kraines
,
S.
,
Komiyama
,
H.
,
Batres
,
R.
,
Koyama
,
M.
, and
Wallace
,
D.
, 2005, “
Internet Based Integrated Environmental Assessment: Using Ontologies to Share Computational Models
,”
J. Ind. Ecol.
1088-1980,
9
(
3
), pp.
31
50
.
182.
Walton
S. V.
,
Handfield
,
R. B.
, and
Melnyk
,
S. T.
, 1998, “
The Green Supply Chain: Integrating Suppliers Into Environmental Management Process
,”
Int. J. Purch. Mater. Manage.
1055-6001,
34
(
2
), pp.
2
11
.
183.
Kleban
,
S. D.
,
Luger
,
G. F.
, and
Watkin
,
R. D.
, 1996, “
Expert System Support for Environmental Assessment of Manufacturing Products and Facilities
,”
J. Intell. Manuf.
0956-5515,
7
, pp.
39
53
.
184.
Chung
,
S. -L.
,
Wee
,
H. -M.
, and
Yang
,
P. -C.
, 2008, “
Optimal Policy for a Closed-Loop Supply Chain Inventory System With Remanufacturing
,”
Math. Comput. Modell.
0895-7177,
48
, pp.
867
881
.
185.
Srivastava
,
S. K.
, 2007, “
Green Supply-Chain Management: A State-of-the-Art Literature Review
,”
Int. J. Manage. Rev.
1468-2370,
9
(
1
), pp.
53
80
.
186.
Chen
,
R. W.
,
Navin-Chandra
,
D.
, and
Print
,
F. B.
, 1994, “
A Cost-Benefit Analysis Model of Product Design for Recyclability and Its Application
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
17
(
4
), pp.
502
507
.
187.
Handfield
,
R.
,
Sroufe
,
R.
, and
Walton
,
S.
, 2005, “
Integrating Environmental Management and Supply Chain Strategies
,”
Bus. Strategy Environ.
,
14
, pp.
1
19
.
188.
Hopkinson
,
N.
,
Gao
,
Y.
, and
McAfee
,
D. J.
, 2006, “
Design for Environment Analyses Applied to Rapid Manufacturing
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
220
, pp.
1363
1372
.
189.
Ilgin
,
M. A.
, and
Gupta
,
S. M.
, 2010, “
Environmentally Conscious Manufacturing and Product Recovery (ECMPRO): A Review of the State of the Art
,”
J. Environ. Manage.
0301-4797,
91
, pp.
563
591
.
190.
Gupta
,
M. C.
, 1995, “
Environmental Management and Its Impact on the Operations Function
,”
Int. J. Operat. Product Manage.
,
15
(
8
), pp.
34
51
.
191.
Hauschild
,
M.
,
Jeswiet
,
J.
, and
Alting
,
L.
, 2005, “
From Life Cycle Assessment to Sustainable Production: Status and Perspectives
,”
CIRP Ann.
0007-8506,
2
, pp.
535
555
.
192.
Bovea
,
M. D.
, and
Wang
,
B.
, 2003, “
Identifying Environmental Improvement Options by Combining Lifecycle Assessment and Fuzzy Set Theory
,”
Int. J. Prod. Res.
0020-7543,
41
(
3
), pp.
593
609
.
193.
Bakar
,
M. S. A.
, and
Rahimifard
,
S.
, 2007, “
Computer-Aided Recycling Process Planning for End-of-Life Electrical and Electronic Equipment
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
221
, pp.
1369
1374
.
194.
Duta
,
L.
,
Filip
,
F. G.
, and
Popescu
,
C.
, 2008a, “
Evolutionary programming in disassembly decision making
,”
Int. J. Comput. Commun. Control
,
3
, pp.
282
286
.
195.
Lee
,
K.
, and
Gadh
,
R.
, 1995, “
Computer Aided Design-for-Disassembly: A Destructive Approach, in Joint Symposium on Concurrent Product and Process Engineering
,”
International Mechanical Engineering Congress and Exposition ‘95
, San Francisco, CA, pp.
1
13
.
196.
Park
,
J. H.
, and
Seo
,
K. K.
, 2006, “
A Knowledge-Based Approximate Life Cycle Assessment System for Evaluating Environmental Impacts of Product Design Alternatives in a Collaborative Design Environment
,”
Adv. Eng. Inf.
1474-0346,
20
, pp.
147
154
.
197.
Lee
,
H.
, 2004, “
The Triple-A Supply Chain
,”
Harvard Bus. Rev.
0017-8012,
82
(
10
), pp.
102
112
.
198.
Huang
,
H.
,
Liu
,
Z.
,
Zhang
,
L.
, and
Sutherland
,
J.
, 2009, “
Materials Selection for Environmentally Conscious Design via a Proposed Life Cycle Environmental Performance Index
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
44
, pp.
1073
1082
.
199.
Johansson
,
G.
,
Greif
,
A.
, and
Fleischer
,
G.
, 2007, “
Managing the Design/Environment Interface: Studies of Integration Mechanisms
,”
Int. J. Prod. Res.
0020-7543,
45
(
18
), pp.
4041
4055
.
200.
Dehghanian
,
F.
, and
Mansour
,
S.
, 2009, “
Designing Sustainable Recovery Network of End-of-Line Products Using Genetic Algorithm
,”
Resour. Conserv. Recycl.
0921-3449,
53
, pp.
559
570
.
201.
Gehin
,
A.
,
Zwolinski
,
P.
, and
Brissaud
,
D.
, 2008, “
A Tool to Implement Sustainable End-of-Life Strategies in the Product Development Phase
,”
J. Cleaner Prod.
0959-6526,
16
, pp.
566
576
.
202.
Azapagic
,
A.
,
Millington
,
A.
, and
Collett
,
A.
, 2006, “
A Methodology for Integrating Sustainability Considerations Into Process Design
,”
Chem. Eng. Res. Des.
0263-8762,
84
(
A6
), pp.
439
452
.
203.
Azapagic
,
A.
, 1999, “
Life Cycle Assessment and Its Application to Process Selection, Design and Optimization
,”
Chem. Eng. J.
0300-9467,
73
, pp.
1
21
.
204.
Beamon
,
B. M.
, 1999, “
Designing the Green Supply Chain
,”
Logist. Inf. Manag.
0957-6053,
12
(
4
), pp.
332
342
.
205.
Rose
,
C. M.
, 2000, “
Design for Environment: A Method for Formulating Product End-of-Life Strategies
,” Ph.D. thesis, Stanford University, Palo Alto, CA.
206.
Cash
,
D. W.
,
Clark
,
W. C.
,
Alcock
,
F.
,
Dickson
,
N. M.
,
Eckley
,
N.
,
Guston
,
D. H.
,
Jager
,
J.
, and
Mitchell
,
R. B.
, 2003, “
Knowledge Systems for Sustainable Development
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
100
(
14
), pp.
8086
8091
.
207.
Eisenhard
,
J. L.
,
Wallace
,
D. R.
,
Sousa
,
I.
,
Schepper
,
M. S.
, and
Rombouts
,
J. P.
, 2000, “
Approximate Life-Cycle Assessment in Conceptual Product Design
,”
Proceedings of the DETC’00 ASME 2000 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
. Baltimore, MD, Sept. 10–13.
208.
Kriwet
,
A.
,
Zussman
,
E.
, and
Seliger
,
G.
, 1995, “
Systematic Integration of Design for Recycling Into Product Design
,”
Int. J. Prod. Econ.
0925-5273,
38
, pp.
15
22
.
209.
Bufardi
,
A.
,
Gheorghe
,
R.
,
Kiritsis
,
D.
, and
Xirouchakis
,
P.
, 2004, “
Multicriteria Decision-Aid Approach for Product End-of-Life Alternative Selection
,”
Int. J. Prod. Res.
0020-7543,
42
(
16
), pp.
3139
3157
.
210.
Bras
,
B.
, and
McIntosh
,
M. W.
, 1999, “
Product, Process, and Organizational Design for Remanufacture—An Overview of Research
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
15
, pp.
167
178
.
211.
Grochowski
,
D. E.
, and
Tang
,
Y.
, 2009, “
A Machine Learning Approach for Optimal Disassembly Planning
,”
Int. J. Comput. Integr. Manuf.
0951-192X,
22
(
4
), pp.
374
383
.
212.
Westkämper
,
E.
,
Alting
,
L.
, and
Arndt
,
G.
, 2001, “
Life Cycle Management and Assessment: Approaches and Visions Towards Sustainable Manufacturing
,”
CIRP Ann.
0007-8506,
49
(
2
), pp.
501
526
.
213.
Giudice
,
F.
, and
Kassem
,
M.
, 2009, “
End-of-Life Impact Reduction Through Analysis and Redistribution of Disassembly Depth: A Case Study in Electronic Device Redesign
,”
Comput. Ind. Eng.
0360-8352,
57
, pp.
677
690
.
214.
Harsch
,
M.
, 2000, “
Life Cycle Simulation as R&D Tool
,” SAE Paper No. 2000-01-1500.
215.
Sharifi
,
H.
,
Ismail
,
H. S.
, and
Reid
,
I.
, 2006, “
Achieving Agility in Supply Chain Through Simultaneous ‘Design of’ and ‘Design for’ the Supply Chain
,”
J. Manuf. Technol. Manage.
1368-2148,
17
(
8
), pp.
1078
1098
.
216.
Tsoulfas
,
G. T.
, and
Pappis
,
C. P.
, 2008, “
A Model for Supply Chains Environmental Performance Analysis and Decision Making
,”
J. Cleaner Prod.
0959-6526,
16
(
15
), pp.
1647
1657
.
217.
Mani
,
M.
,
Lyons
,
K. W.
,
Rachuri
,
S.
,
Subrahmanian
,
E.
, and
Sriram
,
R. D.
, 2008, “
Introducing Sustainability Early Into Manufacturing Process Planning
,”
Proceedings of the 14th International Conference on Manufacturing Science and Engineering
, Evanston, IL, Oct. 7–10.
218.
Spicer
,
A. J.
, and
Johnson
,
M. R.
, 2004, “
Third-Party Demanufacturing as a Solution for Extended Producer Responsibility
,”
J. Cleaner Prod.
0959-6526,
12
, pp.
37
45
.
You do not currently have access to this content.