To utilize beam flexures in constraint-based flexure mechanism design, it is important to develop qualitative and quantitative understanding of their constraint characteristics in terms of stiffness and error motions. This paper provides a highly generalized yet accurate closed-form parametric load-displacement model for two-dimensional beam flexures, taking into account the nonlinearities arising from load equilibrium applied in the deformed configuration. In particular, stiffness and error motions are parametrically quantified in terms of elastic, load-stiffening, kinematic, and elastokinematic effects. The proposed beam constraint model incorporates a wide range of loading conditions, boundary conditions, initial curvature, and beam shape. The accuracy and effectiveness of the proposed beam constraint model is verified by nonlinear finite elements analysis.

1.
Jones
,
R. V.
, 1988,
Instruments and Experiences: Papers on Measurement and Instrument Design
,
Wiley
,
New York, NY
.
2.
Smith
,
S. T.
, 2000,
Flexures: Elements of Elastic Mechanisms
,
Gordon and Breach
,
New York
.
3.
Slocum
,
A. H.
, 1992,
Precision Machine Design
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
4.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York, NY
.
5.
Lobontiu
,
N.
, 2003,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC
,
Boca Raton, FL
.
6.
Hale
,
L. C.
, 1999, “
Principles and Techniques for Designing Precision Machines
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge MA.
7.
Awtar
,
S.
, 2004, “
Analysis and Synthesis of Parallel Kinematic XY Mechanisms
,” Sc.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
8.
Blanding
,
D. K.
, 1999,
Exact Constraint: Machine Design Using Kinematic Principles
,
ASME
,
New York, NY
.
9.
Hopkins
,
J. B.
, 2005, “
Design of Parallel Systems via Freedom and Constraint Topologies (FACT)
,” MS thesis, Massachusetts Institute of Technology, Cambridge, MA.
10.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
, 2007, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
0161-8458,
129
(
6
), pp.
625
639
.
11.
Awtar
,
S.
, and
Sevincer
,
E.
, 2006, “
Elastic Averaging in Flexure Mechanisms: A Multi-Parallelogram Flexure Case-Study
,” Proc. ASME IDETC/CIE 2006, Philadelphia, PA, Paper No. 99752.
12.
Awtar
,
S.
, and
Sen
,
S.
, 2010, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
0161-8458,
132
, p.
081009
.
13.
Crandall
,
S. H.
,
Dahl
,
N. C.
, and
Lardner
,
T. J.
, 1972,
An Introduction to the Mechanics of Solids
,
McGraw-Hill
,
New York
.
14.
Srinath
,
L. S.
, 1980,
Advanced Mechanics of Solids
,
Tata McGraw-Hill
,
New Delhi
.
15.
Krylov
,
A. N.
, 1931,
Calculation of Beams on Elastic Foundation
,
Russian Academy of Sciences
,
St. Petersburg
.
16.
Timoshenko
,
S. P.
, 1956,
Strength of Materials Part II
,
D. Van Nostrand
,
Princeton
.
17.
Timoshenko
,
S. P.
, 1921, “
On the Correction Factor for Shear of the Differential Equation for Transverse Vibrations of Bars of Uniform Cross-Section
,”
Philos. Mag.
1478-6435,
41
, pp.
744
746
.
18.
Novozhilov
,
V. V.
, 1953,
Foundations of the Nonlinear Theory of
,
Elasticity, Graylock
,
Rochester, NY
.
19.
Green
,
A. E.
, and
Laws
,
N.
, 1966, “
A General Theory of Rods
,”
Proc. R. Soc. London, Ser. A
0950-1207,
293
(
1433
), pp.
145
155
.
20.
Rubin
,
M. R.
, 2000,
Cosserat Theories: Shells, Rods and Points
,
Springer
,
New York
.
21.
Lacarbonara
,
W.
,
Paolone
,
A.
, and
Yabuno
,
H.
, 2004, “
Modeling of Planar Nonshallow Prestressed Beams Towards Asymptotic Solutions
,”
Mech. Res. Commun.
0093-6413,
31
(
3
), pp.
301
310
.
22.
Hodges
,
D. H.
, and
Dowell
,
E. H.
, 1974, “
Nonlinear Equations of Motion for the Elastic Bending and Torsion of Twisted Nonuniform Rotor Blades
,” NASA Tech. Note D-7818.
23.
Bisshopp
,
K. E.
, and
Drucker
,
D. C.
, 1945, “
Large Deflection of Cantilever Beams
,”
Q. Appl. Math.
0033-569X,
3
(
3
), pp.
272
275
.
24.
Frisch-Fay
,
R.
, 1963,
Flexible Bars
,
Butterworth
,
Washington, DC
.
25.
Mattiasson
,
K.
, 1981, “
Numerical Results From Large Deflection Beam and Frame Problems Analyzed by Means of Elliptic Integrals
,”
Int. J. Numer. Methods Eng.
0029-5981,
17
, pp.
145
153
.
26.
Howell
,
L. L.
, and
Midha
,
A.
, 1995, “
Parametric Deflection Approximations for End-loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
117
(
1
), pp.
156
165
.
27.
Howell
,
L. L.
, and
Midha
,
A.
, 1996, “
Parametric Deflection Approximations for an Initially-Curved, Large-Deflection Beams in Compliant Mechanisms
,” Proc. ASME DETC 1996, MECH-1215.
28.
Howell
,
L. L.
,
Midha
,
A.
, and
Norton
,
T. W.
, 1996, “
Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid Body Model of Large-Deflection Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
118
(
1
), pp.
126
131
.
29.
Awtar
,
S.
, and
Sen
,
S.
, 2009, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures
,” Proc. ASME IDETC/CIE 2009, San Diego, CA, Paper No. 87808.
30.
Plainevaux
,
J. E.
, 1956, “
Etude des deformations d’une lame de suspension elastique
,”
Nuovo Cimento
0029-6341,
4
, pp.
922
928
.
31.
Legtenberg
,
R.
,
Groeneveld
,
A. W.
, and
Elwenspoek
,
M.
, 1996, “
Comb-Drive Actuators for Large Displacements
,”
J. Micromech. Microeng.
0960-1317,
6
, pp.
320
329
.
32.
Haringx
,
J. A.
, 1949, “
The Cross-Spring Pivot as a Constructional Element
,”
Appl. Sci. Res.
0003-6994,
1
(
1
), pp.
313
332
.
33.
Zelenika
,
S.
, and
DeBona
,
F.
, 2002, “
Analytical and Experimental Characterization of High Precision Flexural Pivots Subjected to Lateral Loads
,”
Precis. Eng.
0141-6359,
26
, pp.
381
388
.
34.
Awtar
,
S.
, and
Slocum
,
A. H.
, 2007, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
129
(
8
), pp.
816
830
.
35.
Simmons
,
G. F.
, and
Robertson
,
J. S.
, 1991,
Differential Equations With Applications and Historical Notes
,
H.
McGraw
, ed., pp.
176
181
.
36.
Reddy
,
J. N.
, 2002,
Energy Principles and Variational Methods in Applied Mechanics
, 2nd ed.,
Wiley
,
New York
, p.
164
.
You do not currently have access to this content.