We study the synthesis of a slider-crank four-bar linkage whose coupler point traces a set of predefined task points. We report that there are at most 558 slider-crank four-bars in cognate pairs passing through any eight specified task points. The problem is formulated for up to eight precision points in polynomial equations. Classical elimination methods are used to reduce the formulation to a system of seven sixth-degree polynomials. A constrained homotopy technique is employed to eliminate degenerate solutions, mapping them to solutions at infinity of the augmented system, which avoids tedious post-processing. To obtain solutions to the augmented system, we propose a process based on the classical homotopy and secant homotopy methods. Two numerical examples are provided to verify the formulation and solution process. In the second example, we obtain six slider-crank linkages without a branch or an order defect, a result partially attributed to choosing design points on a fourth-degree polynomial curve.

1.
Shigley
,
J.
, and
Uicker
,
J.
, 1980,
Theory of Machines and Mechanisms
,
McGraw-Hill
,
New York
.
2.
Erdman
,
A.
, and
Sandor
,
G.
, 1984,
Mechanism Design: Analysis and Synthesis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
3.
Angeles
,
J.
,
Alivizatoss
,
A.
, and
Akhras
,
R.
, 1988, “
An Unconstrained Nonlinear Least-Square Method of Optimization of RRR Planar Path Generators
,”
Mech. Mach. Theory
0094-114X,
23
(
5
), pp.
343
353
.
4.
Freudenstein
,
F.
, and
Sandor
,
G. N.
, 1959, “
Synthesis of Path Generating Mechanisms by Means of a Programmed Digital Computer
,”
J. Eng. Ind.
0022-0817,
81
, pp.
159
168
.
5.
Morgan
,
A.
, and
Wampler
,
C.
, 1990, “
Solving a Planar Four-Bar Design Problem Using Continuation
,”
ASME J. Mech. Des.
0161-8458,
112
(
4
), pp.
544
550
.
6.
Subbian
,
T.
, and
Flugrad
,
D. R.
, 1991, “
Four-Bar Path Generation Synthesis by a Continuation Method
,”
ASME J. Mech. Des.
0161-8458,
113
(
1
), pp.
63
69
.
7.
Roth
,
B.
, and
Freudenstein
,
F.
, 1963, “
Synthesis of Path-Generating Mechanisms by Numerical Methods
,”
ASME J. Eng. Ind.
0022-0817,
85
(
B3
), pp.
298
306
.
8.
Tsai
,
L. W.
, and
Lu
,
J. J.
, 1990, “
Coupler-Point-Curve Synthesis Using Homotopy Methods
,”
ASME J. Mech. Des.
0161-8458,
112
(
3
), pp.
384
389
.
9.
Wampler
,
C. W.
,
Morgan
,
A. P.
, and
Sommese
,
A. J.
, 1992, “
Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages
,”
ASME J. Mech. Des.
0161-8458,
114
(
1
), pp.
153
159
.
10.
Roberts
,
S.
, 1875, “
On Three-Bar Motion in Plane Space
,”
Proc. London Math. Soc.
0024-6115,
s1–7
, pp.
14
23
.
11.
Tari
,
H.
,
Su
,
H. -J.
, and
Li
,
T. -Y.
, 2010, “
A Constrained Homotopy Technique for Excluding Unwanted Solutions From Polynomial Equations Arising in Kinematics Problems
,”
Mech. Mach. Theory
0094-114X,
45
(
6
), pp.
898
910
.
12.
Raghavan
,
M.
, 1993, “
The Stewart Platform of General Geometry Has 40 Configurations
,”
ASME J. Mech. Des.
0161-8458,
115
, pp.
277
282
.
13.
Tsai
,
L. W.
, and
Morgan
,
A. P.
, 1985, “
Solving the Kinematics of the Most General Six- and Five-Degree of Freedom Manipulators by Continuation Methods
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
, pp.
189
200
.
14.
Sommese
,
A. J.
, and
Wampler
,
C. W.
, 2005,
The Numerical Solution of Systems of Polynomials Arising in Engineering and Science
,
World Scientific
,
Singapore
.
15.
Li
,
T. Y.
, 2003, “
Numerical Solution of Polynomial Systems by Homotopy Continuation Methods
,”
Handbook of Numerical Analysis
,
Elsevier
, Vol.
11
, pp.
209
304
.
16.
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
, “
Regeneration Homotopies for Solving Systems of Polynomials
,”
Mathematics of Computation
, to be published.
17.
Su
,
H. -J.
,
McCarthy
,
J. M.
,
Sosonkina
,
M.
, and
Watson
,
L. T.
, 2006, “
Algorithm 857: POLSYS_GLP—A Parallel General Linear Product Homotopy Code for Solving Polynomial Systems of Equations
,”
ACM Trans. Math. Softw.
0098-3500,
32
(
4
), pp.
561
579
.
18.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
, 2008, “
Software for Numerical Algebraic Geometry: A Paradigm and Progress Towards Its Implementation, Software for Algebraic Geometry
,”
The IMA Volumes in Mathematics and Its Applications
,
Springer Verlag
, Vol.
148
, pp.
1
14
.
19.
Lee
,
T. L.
,
Li
,
T. Y.
, and
Tsai
,
C. H.
, 2008, “
HOM4PS-2.0: A Software Package for Solving Polynomial Systems by the Polyhedral Homotopy Continuation Method
,”
Computing
0010-485X,
83
(
2–3
), pp.
109
133
.
20.
Li
,
T. -Y.
, and
Tsai
,
C. -H.
, 2009, “
HOM4PS-2.0para: Parallelization of HOM4PS-2.0 for Solving Polynomial Systems
,”
Parallel Comput.
0167-8191,
35
(
4
), pp.
226
238
.
21.
Sommese
,
A. J.
, and
Wampler
,
C. W.
, 1996, “
Numerical Algebraic Geometry
,”
Lect. Appl. Math.
0075-8485,
32
, pp.
749
763
.
22.
Sommese
,
A. J.
, and
Verschelde
,
J.
, 2000, “
Numerical Homotopies to Compute Generic Points on Positive Dimensional Algebraic Set
,”
J. Complex.
0885-064X,
16
, pp.
572
602
.
23.
Sommese
,
A. J.
,
Verschelde
,
J.
, and
Wampler
,
C. W.
, 2001, “
Numerical Decomposition of the Solution Sets of Polynomial Systems Into Irreducible Components
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
38
(
6
), pp.
2022
2046
.
24.
Dhingra
,
A. K.
,
Cheng
,
J. C.
, and
Kohli
,
D.
, 1994, “
Synthesis of Six-Link, Slider-Crank and Four-Link Mechanisms for Function, Path and Motion Generation Using Homotopy With m-Homogenization
,”
ASME J. Mech. Des.
0161-8458,
116
(
4
), pp.
1122
1131
.
25.
Wampler
,
C. W.
, 1996, “
Isotropic Coordinates, Circularity and Bézout Numbers: Planar Kinematics From a New Perspective
,”
Proceedings of the ASME Design Engineering Technical Conference
, pp.
18
22
.
26.
Cox
,
D.
,
Little
,
J.
, and
O’Shea
,
D.
, 2007,
Ideals, Varieties and Algorithms
, 3rd ed.,
Springer
,
New York
.
27.
Garcia
,
C. B.
, and
Zangwill
,
W. I.
, 1977, “
Global Continuation Methods for Finding All Solutions to Polynomial Systems of Equations in n Variables
,” Center for Math Studies in Business and Economics, University of Chicago, Report No. 7755.
28.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
, 2009, “
Bertini: Software for Numerical Algebraic Geometry
,” http://www.nd.edu/~sommese/bertinihttp://www.nd.edu/~sommese/bertini
29.
Watson
,
L. T.
, and
Morgan
,
A. P.
, 1992, “
Polynomial Programming Using Multi-Homogeneous Polynomial Continuation
,”
J. Comput. Appl. Math.
0377-0427,
43
(
3
), pp.
373
382
.
30.
Duffy
,
J.
, and
Crane
,
C.
, 1980, “
A Displacement Analysis of the General Spatial 7-Link, 7R Mechanism
,”
Mech. Mach. Theory
0094-114X,
15
(
3
), pp.
153
169
.
31.
Norton
,
R. L.
, 2008,
Design of Machinery, An Introduction to the Synthesis and Analysis of Mechanisms and Machines
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.