Shape memory alloys (SMAs) are used in many applications as actuators. The main drawbacks that limit the use of the SMAs in the field of mechanical actuation are the low mechanical bandwidth (up to a few Hertzs) and the unsatisfactory stroke (several millimeters). This paper contributes to enhancing the performances of SMA actuators by proposing a new SMA helical spring with a hollow section. The hollow spring is modeled, then it is constructed, and finally it is tested in compression to compare its performances with those of a spring with a solid cross section of equal stiffness and strength. Emptied of the inefficient material from its center, the hollow spring features a lower mass (37% less) and an extremely lower cooling time (four times less) than its solid counterpart. These results demonstrate that helical springs with a hollow construction can be successfully exploited to build SMA actuators for higher operating frequencies and improved strokes.

1.
Mani
,
G.
,
Feldman
,
M. D.
,
Patel
,
D.
, and
Agraval
,
C. M.
, 2007, “
Coronary Stents: A Materials Perspective
,”
Biomaterials
0142-9612,
28
, pp.
1689
1710
.
2.
Eliades
,
T.
, 2007, “
Orthodontic Materials Research and Applications: Part 2. Current Status and Projected Future Developments in Materials and Biocompatibility
,”
Am. J. Orthod. Dentofacial Orthop.
0889-5406,
131
, pp.
253
262
.
3.
Ma
,
H.
, and
Cho
,
C.
, 2008, “
Feasibility Study on a Superelastic SMA Damper With Re-Centring Capability
,”
Mater. Sci. Eng., A
0921-5093,
473
, pp.
290
296
.
4.
Choi
,
S. B.
, and
Hwang
,
J. H.
, 2000, “
Structural Vibration Control Using Shape Memory Actuators
,”
J. Sound Vib.
0022-460X,
231
, pp.
1168
1174
.
5.
Mavroidis
,
D.
,
Pfeiffer
,
C.
,
Mosley
,
M.
, and
Rutgers
,
U.
, 2000, “
Conventional Motors, Shape Memory Alloys and Electrorheological Fluids
,”
The Topics on NDE (TONE) Series
,
1st ed.
,
ASNT
,
Columbus, OH
, Vol.
4
, pp.
189
214
.
6.
Reynaerts
,
D.
, and
Van Brussel
,
H.
, 1998, “
Design Aspects of Shape Memory Actuators
,”
Mechatronics
0957-4158,
8
, pp.
635
656
.
7.
Elwaleed
,
A. K.
,
Mohamed
,
N. A.
,
Nor
,
M. J. M.
, and
Mustafa
,
M. M.
, 2007, “
A New Concept of a Linear Smart Actuator
,”
Sens. Actuators, A
0924-4247,
135
, pp.
244
249
.
8.
Spinella
,
I.
, and
Dragoni
,
E.
, 2009, “
Design Equations for Binary Shape Memory Actuators Under Dissipative Forces
,”
J. Mech. Eng. Sci.
0022-2542,
223
, pp.
531
543
.
9.
Spinella
,
I.
,
Sciré Mammano
,
G.
, and
Dragoni
,
E.
, 2009, “
Conceptual Design and Simulation of a Compact Shape Memory Actuator for Rotary Motion
,”
J. Mater. Eng. Perform.
1059-9495,
18
, pp.
638
648
.
10.
Yang
,
K.
, and
Gu
,
C.
, 2009, “
A New Manipulator Based on ISMAAs and TWUSMs
,”
ASME J. Mech. Des.
0161-8458,
131
, p.
114502
.
11.
Luo
,
Y.
, and
Hutapea
,
P.
, 2009, “
Design of Bone Transport Device Using Smart Material Actuators
,”
ASME J. Mech. Des.
0161-8458,
131
, p.
091005
.
12.
Sreekumar
,
M.
,
Nagarajan
,
T.
, and
Singaperumal
,
M.
, 2009, “
Design of a Shape Memory Alloy Actuated Compliant Smart Structure: Elastica Approach
,”
ASME J. Mech. Des.
0161-8458,
131
, p.
061008
.
13.
Lan
,
C.
, and
Yang
,
Y.
, 2009, “
A Computational Design Method for a Shape Memory Alloy Wire Actuated Compliant Finger
,”
ASME J. Mech. Des.
0161-8458,
131
, p.
021009
.
14.
Georges
,
T.
,
Brailovski
,
V.
,
Morellon
,
E.
,
Coutu
,
D.
, and
Terriault
,
P.
, 2009, “
Design of Shape Memory Alloy Actuators for Morphing Laminar Wing With Flexible Extrados
,”
ASME J. Mech. Des.
0161-8458,
131
, p.
091006
.
15.
Banerjee
,
A.
,
Bhattacharya
,
B.
, and
Mallik
,
A. K.
, 2010, “
Optimum Discrete Location of Shape Memory Alloy Wire for Enhanced Actuation of a Compliant Link
,”
ASME J. Mech. Des.
0161-8458,
132
, p.
021001
.
16.
Spinella
,
I.
, and
Dragoni
,
E.
, 2010, “
Analysis and Design of Hollow Helical Springs for Shape Memory Actuators
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
21
, pp.
185
199
.
17.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
, 2009,
Theory of Elastic Stability
,
2nd ed.
,
Dover
,
New York
.
18.
Shigley
,
J.
,
Mischke
,
C.
, and
Brown
,
T. H.
, 2006,
Standard Handbook of Machine Design
,
3rd ed.
,
McGraw-Hill
,
New York
.
19.
Wahl
,
A. M.
, 1991,
Mechanical Springs
,
McGraw-Hill
,
New York
.
20.
Bagaria
,
W. J.
, 2000, “
Stress Analysis of Light Weight Closely Coiled Hollow Helical Springs
,” Annual Summary of the United States Naval Academy, www.usna.edu/AcResearch/2000SummaryPDFs/DivEngrWeapAerospaceEngrDept.pdfwww.usna.edu/AcResearch/2000SummaryPDFs/DivEngrWeapAerospaceEngrDept.pdf
21.
Bagaria
,
W. J.
, 2000, “
Manufacturing and Testing of Light Weight Closely Coiled Hollow Helical Springs
,” Annual Summary of the United States Naval Academy, www.usna.edu/AcResearch/2000SummaryPDFs/DivEngrWeapAerospaceEngrDept.pdfwww.usna.edu/AcResearch/2000SummaryPDFs/DivEngrWeapAerospaceEngrDept.pdf
22.
Gobbi
,
M.
, and
Mastinu
,
G.
, 2001, “
On the Optimal Design of Composite Material Tubular Helical spring
,”
Meccanica
0025-6455,
36
, pp.
525
553
.
23.
Sokolnikoff
,
I. S.
, 1983,
Mathematical Theory of Elasticity
,
2nd ed.
,
Krieger
,
Malabar
.
24.
Daly
,
S.
,
Ravichandran
,
G.
, and
Bhattacharya
,
K.
, 2007, “
Stress-Induced Martensitic Phase Transformation in Thin Sheets of Nitinol
,”
Acta Mater.
1359-6454,
55
, pp.
3593
3600
.
25.
Uchil
,
J.
,
Mahesh
,
K. K.
, and
Ganesh Kumara
,
K.
, 2001, “
Calorimetric Study of the Effect of Linear Strain on the Shape Memory Properties of Nitinol
,”
Physica B
0921-4526,
305
, pp.
1
9
.
26.
Bellini
,
A.
,
Colli
,
M.
, and
Dragoni
,
E.
, 2009, “
Mechatronic Design of a Shape Memory Alloy Actuator for Automotive Tumble Flaps: A Case Study
,”
IEEE Trans. Ind. Electron.
0278-0046,
56
, pp.
2644
2656
.
You do not currently have access to this content.