Latches are essential machine elements utilized by all sectors (military, automotive, consumer, manufacturing, etc.) with a growing need for active capabilities such as automatic release and reset, which require actuation. Shape memory alloy (SMA) actuation is an attractive alternative technology to conventional actuation (electrical, hydraulic, etc.) because SMA, particularly in the wire form, is simple, inexpensive, lightweight, and compact. This paper introduces a fundamental latch technology, referred to as the T-latch, which is driven by an ultrafast SMA wire actuator that employs a novel spool-packaged architecture to produce the necessary rotary release motion within a compact footprint. The T-latch technology can engage passively, maintain a strong structural connection in multiple degrees of freedom with zero power consumption, actively release within a very short timeframe (<20ms, utilizing the SMA spooled actuator), and then repeat operation with automatic reset. The generic architecture of the T-latch and governing operational behavioral models discussed within this paper provide the background for synthesizing basic active latches across a broad range of applications. To illustrate the utility and general operation of the T-latch, a proof-of-concept prototype was designed, built, and experimentally characterized regarding the basic functions of engagement, retention, release, and reset for a common case study of automotive panel lockdown. Based on the successful demonstration and model validation presented in this study, the T-latch demonstrates its promise as an attractive alternative technology to conventional technologies with the potential to enable simple, low-cost, lightweight, and compact active latches across a broad range of industrial applications.

1.
Shydo
,
R. M.
,
Garcia
,
E.
, and
Harris
,
J. M.
, 2005, “
A Remotely Activated SMA Actuated Naval Tie Down System
,”
Proc. SPIE
0277-786X,
5762
, pp.
56
64
.
2.
Busch
,
J. D.
,
Johnson
,
A. D.
, and
Purdy
,
W. E.
, 1992, “
Development of a Non-Explosive Release Device for Aerospace Applications
,”
Proceedings of the 26th Aerospace Mechanisms Symposium
, pp.
1
16
.
3.
McCloskey
,
T. E.
, 1993, “
Non-Pyrotechnic Release System
,” Patent No. 5,192,147.
4.
Webster
,
R. G.
, 1993, “
No-Shock Separation Mechanism
,” Patent No. 5,248,233.
5.
Carpenter
,
B.
,
Clark
,
C.
, and
Weems
,
W.
, 1996, “
Shape Memory Actuated Release Devices
,”
Proc. SPIE
0277-786X,
2721
, pp.
420
426
.
6.
Lucy
,
M.
,
Hardy
,
R.
, and
Kist
,
E.
, 1996, “
Report on Alternative Devices to Pyrotechnics on Spacecraft
,”
Proceedings of the AIAA/USU Conference on Small Satellites
, pp.
1
22
.
7.
Nygren
,
W. D.
, 1997, “
Flywheel Nut Separable Connector and Method
,” Patent No. 5,603,595.
8.
Smith
,
S.
,
Purdy
,
B.
, and
Nygren
,
B.
, 1997, “
Development of a New, No-Shock Separation Mechanism for Spacecraft Release Applications
,”
31st Aerospace Mechanisms Symposium
,
Huntsville, AL
.
9.
Christiansen
,
S.
,
Tibbitts
,
S.
, and
Dowen
,
D.
, 1999, “
Fast Acting Non-Pyrotechnic 10 kN Separation Nut
,”
Eighth European Space Mechanisms and Tribology Symposium
,
Toulouse, France
.
10.
Peffer
,
A.
,
Denoyer
,
K.
,
Fosness
,
E.
, and
Sciulli
,
D.
, 2000, “
Development and Transition of Low-Shock Spacecraft Release Devices
,”
Aerospace Conference Proceedings
,
IEEE
,
New York
, Vol.
4
, pp.
277
284
.
11.
Fosness
,
E. R.
,
Buckley
,
S. J.
, and
Gammill
,
W. F.
, 2001, “
Deployment and Release Devices Efforts at the Air Force Research Laboratory Space Vehicles Directorate
,”
AIAA Space 2001 Conference and Exposition
,
Albuquerque, NM
.
12.
Helgesen
,
B.
, 2001, “
High Stiffness Latching of Deployable Space Structure Joints Using Melting Metal Technology
,”
AIAA Space 2001 Conference and Exposition
,
Albuquerque, NM
.
13.
Ahmed
,
R.
,
Johnston
,
A. S.
,
Garrison
,
J. C.
,
Gaines
,
J. L.
, and
Waggoner
,
J. D.
, 2003, “
Design and Demonstration of Bolt Retractor Separation System for x-38 Deorbit Propulsion State
,”
Proceedings of the Tenth European Space Mechanisms and Tribology Symposium
,
San Sebastián, Spain
, pp.
371
377
.
14.
Arritt
,
B. J.
,
Fosness
,
E. R.
,
Wegner
,
P. M.
,
Brackett
,
C.
, and
Buckley
,
S. J.
, 2003, “
Multiple Payload Adapters; Opening the Doors to Space
,”
Aerospace Conference Proceedings 2003
,
IEEE
,
New York
, Vol.
5
, pp.
5
-2467–5-
2473
.
15.
Clement
,
J.
, and
Brei
,
D.
, 2004, “
Proof-of-concept investigation of Active Velcro for Smart Attachment Mechanisms
,”
42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit
,
Seattle, WA
.
16.
Sanders
,
B.
,
Crowe
,
R.
, and
Garcia
,
E.
, 2004, “
Defense Advanced Research Projects Agency—Smart Materials and Structures Demonstration Program Overview
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
15
, pp.
227
233
.
17.
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
, 2007, “
Aersopace Applications of Shape Memory Alloys
,”
Proc. IMechE, Part G: J. Aerospace Engineering
,
221
, pp.
535
552
.
18.
Redmond
,
J.
,
Brei
,
D.
,
Luntz
,
J.
,
Browne
,
A.
,
Johnson
,
N.
, and
Strom
,
K.
, 2007, “
The Design and Experimental Validation of an Ultrafast Smart Latch
,”
Proceedings of the IMECE 2007
, Paper No. 43372.
19.
Ciferri
,
L.
, 2004, “
Fiat Designs New Door Lock
,”
Automotive News Europe
, p.
9
.
20.
Barnes
,
B.
,
Brei
,
D.
,
Luntz
,
J.
,
Browne
,
A.
, and
Strom
,
K.
, 2006, “
Panel Deployment Using Ultrafast SMA Latches
,”
ASME
Paper No. IMECE2006-15206.
21.
Magna Closures
, 2007, “
Magna Closures
,” http://www.magnaclosures.comhttp://www.magnaclosures.com
22.
Stanford
,
T.
,
Barvosa-Carter
,
W.
,
Browne
,
A. L.
, and
Johnson
,
N. L.
, 2008, “
Active Material Reversible Attachments: Shape Memory Polymer Based
,”
Proc. SPIE
0277-786X,
6930
, p.
693003
.
23.
Rens
,
J.
,
Clark
,
R.
,
Jewell
,
G.
, and
Howe
,
D.
, 2005, “
Enhancing the Force Capability of Permanent Magnet Latching Actuators for Electromechanical Valve Systems
,”
J. Appl. Phys.
0021-8979,
97
, p.
10R501
.
24.
Fisher
,
S. M.
, 1998, “
In Line Anti-Scald Safety Valve
,”
Proceedings of the Shape Memory Technology Conference
, pp.
302
314
.
25.
Johnson
,
B.
,
Brei
,
D. E.
, and
Patera
,
J.
, 2003, “
Application of SMA Technology to Auxiliary Functions in Appliances
,”
Proc. SPIE
0277-786X,
4698
, pp.
427
440
.
26.
Osvatic
,
M. S.
, 2005, “
Washing Machine Lid Lock With Memory Wire Actuator
,” Patent No. 7,617,703.
27.
Dynalloy, Inc.
, 2007, “
Strategic Partners
,” http://dynalloy.com/Links.htmlhttp://dynalloy.com/Links.html
29.
Albrecth
,
T. R.
, and
Sai
,
F.
, 1999, “
Load/Unload Technology for Disk Drives
,”
IEEE Trans. Magn.
0018-9464,
35
(
2
), pp.
857
862
.
30.
Chang
,
J.
,
Monajemy
,
R.
,
Pham
,
T.
,
Baral
,
D.
, and
Byun
,
Y.
, 2005, “
Pawl Latch Mechanism Design and Control for Load/Unload Technology
,”
Microsyst. Technol.
0946-7076,
11
, pp.
747
750
.
31.
Ratliff
,
R.
, and
Pagilla
,
P.
, 2005, “
Experimental Investigation of Disc Drive Seek Control When Subject to a Nonlinear Magnetic Bias
,”
American Control Conference
,
IEEE
,
New York
, pp.
3198
3203
.
32.
Liu
,
Y.
,
Kang
,
S. W.
, and
Chang
,
S.
, 2009, “
Inertial Magnetic Latch Design Considering Actuator Load Unload
,”
Microsyst. Technol.
0946-7076,
15
, pp.
703
712
.
33.
Jones
,
N.
,
Billett
,
E.
, and
Chiodo
,
J.
, 2003, “
Towards Self-Disassembling Vehicles
,”
J. Sustainable Product Design
,
3
, pp.
59
74
.
34.
Chiodo
,
J. D.
,
Jones
,
N.
,
Billett
,
E. H.
, and
Harrison
,
D. J.
, 2002, “
Shape Memory Alloy Actuators for Active Disassembly Using ‘Smart’ Materials of Consumer Electronics Products
,”
Mater. Des.
0264-1275,
23
, pp.
471
478
.
35.
Willems
,
B.
,
Dewulf
,
W.
, and
Duflou
,
J.
, 2005, “
Design for Active Dissassembly (DfAD)
,”
Proceedings of the IEEE International Symposium on Electronics and the Environment
.
36.
Shalaby
,
M.
, and
Saitou
,
K.
, 2008, “
Design for Disassembly With High-Stiffness Heat-Reversible Locator-Snap Systems
,”
ASME J. Mech. Des.
0161-8458,
130
(
12
), p.
121701
.
37.
Shalaby
,
M.
, and
Saitou
,
K.
, 2009, “
High-Stiffness, Lock-and-Key Heat-Reversible Locator-Snap Systems for the Design for Disassembly
,”
ASME J. Mech. Des.
0161-8458,
131
(
4
), p.
041005
.
38.
Coulter
,
S.
,
Bras
,
B.
,
Winslow
,
G.
, and
Yester
,
S.
, 1998, “
Designing for Material Separation: Lessons From Automotive Recycling
,”
ASME J. Mech. Des.
0161-8458,
120
(
3
), pp.
501
509
.
39.
Zykov
,
V.
, and
Lipson
,
H.
, 2007, “
Experiment Design for Stochastic Three-Dimensional Reconfiguration of Modular Robots
,”
Proceedings of the 2007 IEEE/RSJ International Conference on Robots and Systems, Self-Reconfigurable Robotics Workshop
,
San Diego, CA
.
40.
Kurokawa
,
H.
,
Tomita
,
K.
,
Kamimura
,
A.
,
Kokagi
,
S.
,
Hasuo
,
T.
, and
Murata
,
S.
, 2008, “
Distributed Self-Reconfiguration of m-tran III Modular Robotic System
,”
Int. J. Robot. Res.
0278-3649,
27
(
3–4
), pp.
373
386
.
41.
Mayyas
,
M.
,
Zhang
,
P.
,
Lee
,
W. H.
,
Popa
,
D.
, and
Chiao
,
J. C.
, 2009, “
An Active Micro Joining Mechanism for 3D Assembly
,”
J. Micromech. Microeng.
0960-1317,
19
, p.
035012
.
42.
Haga
,
Y.
,
Makishi
,
W.
,
Iwami
,
K.
,
Totsu
,
K.
,
Nakamura
,
K.
, and
Esashi
,
M.
, 2005, “
Dynamic Braille Display Using SMA Coil Actuator and Magnetic Latch
,”
Sens. Actuators, A
0924-4247,
119
, pp.
316
322
.
43.
Haga
,
Y.
,
Mizushima
,
M.
,
Matsunaga
,
T.
, and
Esashi
,
M.
, 2005, “
Medical and Welfare Applications of Shape Memory Alloy Microcoil Actuators
,”
Smart Mater. Struct.
0964-1726,
14
, pp.
S266
S272
.
44.
Yeh
,
F. H.
, and
Liang
,
S. H.
, 2007, “
Mechanism Design of the Flapper Actuator in Chinese Braille Display
,”
Sens. Actuators, A
0924-4247,
135
, pp.
680
689
.
45.
Huber
,
J. E.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
, 1997, “
The Selection of Mechanical Actuators Based on Performance Indices
,”
Proc. R. Soc. London, Ser. A
0950-1207,
453
(
1965
), pp.
2185
2205
.
46.
Mavroidis
,
C.
, 2002, “
Development of Advanced Actuators Using Shape Memory Alloys and Electrorheological Fluids
,”
Res. Nondestruct. Eval.
0934-9847,
14
(
1
), pp.
1
32
.
47.
Yousefi-Koma
,
A.
, and
Zimcik
,
D. G.
, 2003, “
Applications of Smart Structures to Aircraft for Performance Enhancement
,”
Can. Aeronautics Space J.
0008-2821,
49
(
4
), pp.
163
172
.
48.
Madden
,
J. D. W.
,
Vandesteeg
,
N. A.
,
Anquetil
,
P. A.
,
Madden
,
P. G. A.
,
Takshi
,
A.
,
Pytel
,
R.
,
Lafontaine
,
S. R.
,
Wieringa
,
P. A.
, and
Hunter
,
I. W.
, 2004, “
Artificial Muscle Technology: Physical Principles and Naval Prospects
,”
IEEE J. Ocean. Eng.
0364-9059,
29
(
3
), pp.
706
728
.
49.
Browne
,
A.
,
Bucknor
,
N.
,
Cheng
,
Y.
,
Johnson
,
N.
,
Lin
,
W.
,
Namuduri
,
C.
,
Sun
,
Z.
, and
Usoro
,
P.
, 2004, “
Mechamatronics: An Automotive Perspective
,”
Proc. SPIE
0277-786X,
5388
, pp.
313
319
.
50.
Hesselbach
,
J.
, 2007, “
Shape Memory Actuators
,” in
Adaptronics and Smart Structures: Basics, Materials, Design, and Applications
,
H.
Janocha
, ed.,
Springer
,
Berlin
, Chap. 6.4, pp.
145
163
.
51.
Taub
,
A.
, 2006, “
Automotive Materials: Technology Trends and Challenges in the 21st Century
,”
MRS Bull.
0883-7694,
31
, pp.
336
343
.
52.
Redmond
,
J.
,
Brei
,
D.
,
Luntz
,
J.
,
Browne
,
A.
, and
Johnson
,
N.
, 2008, “
Behavioral Model and Experimental Validation for a Spool-Packaged Shape Memory Alloy Actuator
,”
Proc. SPIE
0277-786X,
6930
, p.
693004
.
53.
Redmond
,
J.
,
Brei
,
D.
,
Luntz
,
J.
,
Browne
,
A.
, and
Johnson
,
N.
, 2008, “
Behavioral Model and Experimental Validation for Spool-Packaged Shape Memory Alloy Linear Actuators
,”
Proceedings of the 19th International Conference on Adaptive Structures and Technologies
, pp.
1
8
.
54.
Redmond
,
J.
,
Brei
,
D.
,
Luntz
,
J.
,
Browne
,
A.
, and
Johnson
,
N.
, 2009, “
Effect of Bending on the Performance of Spool-Packaged Shape Memory Alloy Actuators
,”
Proc. SPIE
0277-786X,
7290
, p.
729007
.
55.
Federal Motor Vehicle Safety Standard 206, U.S. Department of Transportation, National Highway Traffic Safety Administration.
56.
Liang
,
C.
, and
Rogers
,
C. A.
, 1992, “
Design of Shape Memory Alloy Actuators
,”
ASME J. Mech. Des.
0161-8458,
114
(
2
), pp.
223
230
.
57.
Brinson
,
L. C.
, 1993, “
One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation With Non-Constant Material Functions and Redefined Martensite Internal Variable
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
4
(
2
), pp.
229
242
.
58.
Boyd
,
J. G.
, and
Lagoudas
,
D. C.
, 1996, “
A Thermodynamical Constitutive Model for Shape Memory Materials, Part I: The Monolithic Shape Memory Alloy
,”
Int. J. Plast.
0749-6419,
12
(
6
), pp.
805
842
.
59.
Shaw
,
J.
, and
Churchill
,
C.
, 2009, “
A Reduced-Order Thermomechanical Model and Analytical Solution for Uniaxial Shape Memory Alloy Actuators
,”
Smart Mater. Struct.
0964-1726,
18
(
6
), p.
065001
.
60.
Pilkey
,
W.
, 1997,
Peterson’s Stress Concentration Factors
,
2nd ed.
,
Wiley
,
New York
, Chap. 5.
61.
Howell
,
H. G.
, 1953, “
The General Case of Friction of a String Round a Cylinder
,”
J. Text. Inst.
0040-5000,
44
, pp.
359
362
.
62.
Sun
,
H.
,
Pathak
,
A.
,
Luntz
,
J.
,
Brei
,
D.
,
Alexander
,
P.
, and
Johnson
,
N.
, 2008, “
Stabilizing Shape Memory Alloy Actuator Performance Through Cyclic Shakedown: An Empirical Study
,”
Proc. SPIE
0277-786X,
6930
, p.
69300Q
.
63.
Energizer Holdings, Inc.
, 2009. “
Product Datasheet for E91 AA Alkaline Battery
,” Energizer Technical Information, http://data.energizer.com/PDFs/E91.pdfhttp://data.energizer.com/PDFs/E91.pdf
This content is only available via PDF.
You do not currently have access to this content.