The honeycomb-based domain representation directly yields checkerboard and point flexure free optimal solutions to various topology design problems without requiring any supplementary suppression method. This is because the root cause behind the appearance of these pathologies, namely, the permitted single-point connectivity between contiguous subregions in rectangular-cell-based representation, is eliminated. The mesh-free material-mask overlay method further promises unadulterated “black and white” solutions in contrast to density interpolation schemes where the material is modeled between the “void” and “filled” states. Here, we propose improvements to the material-mask overlay method by judiciously increasing the number of material masks during a sequence of subsearches for the best solution. We used an alternative, mutation-based zero-order stochastic search, which, through a small population of solution vectors, can yield multiple solutions from a single search for nonconvex topology optimization formulations. Wachspress hexagonal cells are used as finite elements since they offer rich displacement interpolation functions. Singular solutions are penalized and filtered. With the improved material-mask overlay method, we showcase the synthesis using two classical small displacement problems each on optimal stiff structures and compliant mechanisms to illustrate the extraction of pathology-free, “black and white,” and multiple solutions.

1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
(
2
), pp.
197
224
.
2.
Hassani
,
B.
, and
Hinton
,
E.
, 1999,
Homogenization and Structural Topology Optimization
,
Springer
,
Berlin
.
3.
Ananthasuresh
,
G. K.
,
Kota
,
S.
, and
Kikuchi
,
N.
, 1994, “
Strategies for Systematic Synthesis of Compliant Mems
,”
Proceedings of the 1994 ASME Winter Annual Meeting
, Chicago, pp.
677
686
.
4.
Nishiwaki
,
S.
,
Frecker
,
M.
,
Min
,
S.
, and
Kikuchi
,
N.
, 1998, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
42
(
3
), pp.
535
559
.
5.
Li
,
Y.
,
Saitou
,
K.
, and
Kikuchi
,
N.
, 2004, “
Topology Optimization of Thermally Actuated Compliant Mechanisms Considering Time-Transient Effect
,”
Finite Elem. Anal. Design
0168-874X,
40
, pp.
1317
1331
.
6.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
, 1991, “
The COC Algorithm, Part II: Topological, Geometrical, and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
89
, pp.
309
336
.
7.
Mlejnek
,
H. P.
, and
Schirrmacher
,
R.
, 1993, “
An Engineering Approach to Optimal Material Distribution and Shape Finding
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
106
, pp.
1
26
.
8.
Bendsøe
,
M. P.
, 1995,
Optimization of Structural Topology, Shape and Material
,
Springer
,
Berlin
.
9.
Sigmund
,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
0890-5452,
25
, pp.
495
526
.
10.
Larsen
,
U. D.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
, 1997, “
Design and Fabrication of Compliant Micromechanisms and Structures With Negative Poisson’s Ratio
,”
J. Microelectromech. Syst.
1057-7157,
6
(
2
), pp.
99
106
.
11.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
, 2001, “
Topology Optimization of Nonlinear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
26–27
), pp.
3443
3459
.
12.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
(
12
), pp.
2683
2705
.
13.
Sigmund
,
O.
, 2001, “
Design of Multiphysics Actuators Using Topology Optimization—Part I: One-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
49–50
), pp.
6577
6604
.
14.
Sigmund
,
O.
, 2001, “
Design of Multiphysics Actuators Using Topology Optimization—Part II: Two-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
49–50
), pp.
6605
6627
.
15.
Guest
,
J. K.
,
Prévost
,
J. H.
, and
Belytschko
,
T.
, 2004, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
238
254
.
16.
Rahmatalla
,
S. F.
, and
Swan
,
C. C.
, 2004, “
A Q4/Q4 Continuum Structural Topology Optimization Implementation
,”
Struct. Multidiscip. Optim.
1615-147X,
27
, pp.
130
135
.
17.
Wang
,
M. Y.
,
Chen
,
S. K.
,
Wang
,
X. M.
, and
Mei
,
Y. L.
, 2005, “
Design of Multi-Material Compliant Mechanisms Using Level Set Methods
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
941
956
.
18.
Luo
,
Z.
,
Tong
,
L. Y.
,
Wang
,
M. Y.
, and
Wang
,
S. Y.
, 2007, “
Shape and Topology Optimization of Compliant Mechanisms Using a Parameterization Level Set Method
,”
J. Comput. Phys.
0021-9991,
227
, pp.
680
705
.
19.
Luo
,
J. Z.
,
Luo
,
Z.
,
Chen
,
S. K.
,
Tong
,
L. Y.
, and
Wang
,
M. Y.
, 2008, “
A New Level Set Method for Systematic Design of Hinge-Free Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
198
, pp.
318
331
.
20.
Díaz
,
A.
, and
Sigmund
,
O.
, 1995, “
Checkerboard Patterns in Layout Optimization
,”
Struct. Optim.
0934-4373,
10
, pp.
40
45
.
21.
Jog
,
C. S.
, and
Haber
,
R. B.
, 1996, “
Stability of Finite Element Models for Distributed Parameter Optimization and Topology Design
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
130
, pp.
203
226
.
22.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2003, “
A Novel Formulation for the Design of Distributed Compliant Mechanisms
,”
Mech. Based Des. Struct. Mach.
1539-7734,
31
(
2
), pp.
151
179
.
23.
Saxena
,
R.
, and
Saxena
,
A.
, 2007, “
On Honeycomb Representation and SIGMOID Material Assignment in Optimal Topology Synthesis of Compliant Mechanisms
,”
Finite Elem. Anal. Design
0168-874X,
43
(
14
), pp.
1082
1098
.
24.
Mankame
,
N. D.
, and
Saxena
,
A.
, 2007, “
Analysis of the Hex Cell Discretization for Topology Synthesis of Compliant Mechanisms
,”
ASME
Paper No. DETC 35244.
25.
Sigmund
,
O.
, 1994, “
Design of Material Structures Using Topology Optimization
,” Ph. D. thesis, DTU, Denmark.
26.
Bonnetier
,
E.
, and
Jouve
,
F.
, 1998, “
Checkerboard Instabilities in Topological Shape Optimization Algorithms
,”
Proceedings of the Conference on Inverse Problems, Control and Shape Optimization (PICOF’98)
.
27.
Poulsen
,
T. A.
, 2003, “
A New Scheme for Imposing Minimum Length Scale in Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
, pp.
741
760
.
28.
Hull
,
P.
, and
Canfield
,
S.
, 2006, “
Optimal Synthesis of Compliant Mechanisms Using Subdivision and Commercial FEA
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
337
348
.
29.
Saxena
,
R.
, and
Saxena
,
A.
, 2009, “
Design of Electrothermally Compliant MEMS With Hexagonal Cells Using Local Temperature and Stress Constraints
,”
ASME J. Mech. Des.
0161-8458,
131
(
5
), pp.
051006
.
30.
Saxena
,
R.
, and
Saxena
,
A.
, 2003, “
On Honeycomb Parameterization for Topology Optimization of Compliant Mechanisms
,”
ASME
Paper No. DETC2002/DAC-48806.
31.
Saxena
,
A.
, 2009, “
A Material-Mask Overlay Strategy for Continuum Topology Optimization of Compliant Mechanisms Using Honeycomb Discretization
,”
ASME J. Mech. Des.
0161-8458,
130
(
8
), pp.
082304
.
32.
Talischi
,
C.
,
Paulino
,
G. H.
, and
Le Chau
,
H.
, 2009, “
Honeycomb Wachspress Finite Elements for Structural Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
37
(
6
), pp.
569
583
.
33.
Langelaar
,
M.
, 2007, “
The Use of Convex Uniform Honeycomb Tessellations in Structural Topology Optimization
,”
Proceedings of the Seventh World Congress on Structural and Multidisciplinary Optimization
, Seoul, South Korea.
34.
Sethian
,
J. A.
, and
Wiegmann
,
A.
, 2000, “
Structural Boundary via Level Set and Immersed Interface Methods
,”
J. Comput. Phys.
0021-9991,
163
(
2
), pp.
489
528
.
35.
Belytschko
,
T.
,
Xiao
,
S. P.
, and
Parimi
,
C.
, 2003, “
Topology Optimization With Implicit Functions and Regularization
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
, pp.
1177
1196
.
36.
Chang
,
S. Y.
, and
Youn
,
S. K.
, 2006, “
Material Cloud Method—Its Mathematical Investigation and Numerical Application for 3D Engineering Design
,”
Int. J. Solids Struct.
0020-7683,
43
(
17
), pp.
5337
5354
.
37.
Horoba
,
C.
, and
Newmann
,
F.
, 2008, “
Benefits and Drawbacks for the Use of ε
-Dominance in Evolutionary Multi-Objective Optimization,”
GECCO’08
, Atlanta, GA.
38.
Tóth
,
L. F.
, 1964, “
What the Bees Know and What They Do Not Know
,”
Bull. Am. Math. Soc.
0002-9904,
70
(
4
), pp.
468
481
.
39.
Bleicher
,
M. N.
, and
Toth
,
L. F.
, 1965, “
Two-Dimensional Honeycombs
,”
Am. Math. Monthly
0002-9890,
72
(
9
), pp.
969
973
.
40.
Hales
,
T. C.
, 2001, “
The Honeycomb Conjecture
,”
Discrete Comput. Geom.
0179-5376,
25
, pp.
1
22
.
41.
Weaire
,
D.
, and
Phelan
,
R.
, 1994, “
Optimal Design of Honeycombs
,”
Nature (London)
0028-0836,
367
(
13
), pp.
123
123
.
42.
Kreyszig
,
E.
, 1999,
Advanced Engineering Mathematics
,
8th ed.
,
Wiley
,
New York
.
43.
Rai
,
A. K.
,
Saxena
,
A.
, and
Mankame
,
N. D.
, 2007, “
Synthesis of Path Generating Compliant Mechanisms Using Initially Curved Frame Elements
,”
ASME J. Mech. Des.
0161-8458,
129
, pp.
1056
1063
.
44.
Frecker
,
M.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
N.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
0161-8458,
119
, pp.
238
245
.
45.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2000, “
On an Optimality Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
1615-147X,
19
, pp.
36
49
.
You do not currently have access to this content.