Computational tools such as finite element analysis and simulation are widely used in engineering, but they are mostly used for design analysis and validation. If these tools can be integrated for design optimization, it will undoubtedly enhance a manufacturer’s competitiveness. Such integration, however, faces three main challenges: (1) high computational expense of simulation, (2) the simulation process being a black-box function, and (3) design problems being high dimensional. In the past two decades, metamodeling has been intensively developed to deal with expensive black-box functions, and has achieved success for low dimensional design problems. But when high dimensionality is also present in design, which is often found in practice, there lacks of a practical method to deal with the so-called high dimensional, expensive, and black-box (HEB) problems. This paper proposes the first metamodel of its kind to tackle the HEB problem. This paper integrates the radial basis function with high dimensional model representation into a new model, RBF-HDMR. The developed RBF-HDMR model offers an explicit function expression, and can reveal (1) the contribution of each design variable, (2) inherent linearity/nonlinearity with respect to input variables, and (3) correlation relationships among input variables. An accompanying algorithm to construct the RBF-HDMR has also been developed. The model and the algorithm fundamentally change the exponentially growing computation cost to be polynomial. Testing and comparison confirm the efficiency and capability of RBF-HDMR for HEB problems.

1.
Wang
,
G. G.
, and
Shan
,
S.
, 2007, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
129
, pp.
370
389
.
2.
Chen
,
V. C. P.
,
Tsui
,
K. -L.
,
Barton
,
R. R.
, and
Meckesheimer
,
M.
, 2006, “
A Review on Design, Modeling and Applications of Computer Experiments
,”
IIE Trans.
0740-817X,
38
, pp.
273
291
.
3.
Simpson
,
T. W.
,
Toropov
,
V.
,
Balabanov
,
V.
, and
Viana
,
F. A. C.
, 2008, “
Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far We Have Come—or Not
,”
Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Victoria, BC, Canada, Sept. 10–12, Paper No. AIAA 2008-5802.
4.
Welch
,
W. J.
,
Buck
,
R. J.
,
Sacks
,
J.
,
Wynn
,
H. P.
,
Mitchell
,
T. J.
, and
Morris
,
M. D.
, 1992, “
Screening, Predicting, and Computer Experiments
,”
Technometrics
0040-1706,
34
(
1
), pp.
15
25
.
5.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
, 2001, “
Comparative Studies of Metamodeling Techniques Under Multiple Modeling Criteria
,”
Struct. Multidiscip. Optim.
1615-147X,
23
(
1
), pp.
1
13
.
6.
Shorter
,
J. A.
,
Ip
,
P. C.
, and
Rabitz
,
H. A.
, 1999, “
An Efficient Chemical Kinetics Solver Using High Dimensional Model Representation
,”
J. Phys. Chem. A
1089-5639,
103
(
36
), pp.
7192
7198
.
7.
Bates
,
R. A.
,
Buck
,
R. J.
,
Riccomagno
,
E.
, and
Wynn
,
H. P.
, 1996, “
Experimental Design and Observation for Large Systems
,”
J. R. Stat. Soc. Ser. B (Methodol.)
0035-9246,
58
(
1
), pp.
77
94
.
8.
Booker
,
A. J.
,
Dennis
,
J. E. J.
,
Frank
,
P. D.
,
Serafini
,
D. B.
,
Torczon
,
V.
, and
Trosset
,
M. W.
, 1999, “
A Rigorous Framework for Optimization of Expensive Functions by Surrogates
,”
Struct. Optim.
0934-4373,
17
(
1
), pp.
1
13
.
9.
Koch
,
P. N.
,
Simpson
,
T. W.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 1999, “
Statistical Approximations for Multidisciplinary Design Optimization: The Problem of Size
,”
J. Aircr.
0021-8669,
36
(
1
), pp.
275
286
.
10.
Tu
,
J.
, and
Jones
,
D. R.
, 2003, “
Variable Screening in Metamodel Design by Cross-Validated Moving Least Squares Method
,”
Proceedings of the 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference
, Norfolk, VA, Apr. 7–10.
11.
Friedman
,
J. H.
, and
Stuetzle
,
W.
, 1981, “
Projection Pursuit Regression
,”
J. Am. Stat. Assoc.
0162-1459,
76
(
376
), pp.
817
823
.
12.
Friedman
,
J. H.
, 1991, “
Multivariate Adaptive Regressive Splines
,”
Ann. Stat.
0090-5364,
19
(
1
), pp.
1
67
.
13.
Sobol
,
I. M.
, 1993, “
Sensitivity Estimates for Nonlinear Mathematical Models
,”
Mathematical Modeling & Computational Experiment
,
1
(
4
), pp.
407
414
.
14.
Li
,
G.
,
Wang
,
S. -W.
,
Rosenthal
,
C.
, and
Rabitz
,
H.
, 2001, “
High Dimensional Model Representations Generated From Low Dimensional Data Samples. I. Mp-Cut-HDMR
,”
J. Math. Chem.
0259-9791,
30
(
1
), pp.
1
30
.
15.
Rabitz
,
H.
, and
Aliş
,
Ö. F.
, 1999, “
General Foundations of High-Dimensional Model Representations
,”
J. Math. Chem.
0259-9791,
25
(
2/3
), pp.
197
233
.
16.
Li
,
G.
,
Rosenthal
,
C.
, and
Rabitz
,
H.
, 2001, “
High Dimensional Model Representations
,”
J. Phys. Chem. A
1089-5639,
105
(
33
), pp.
7765
7777
.
17.
Li
,
G.
,
Hu
,
J.
,
Wang
,
S. -W.
,
Georgopoulos
,
P. G.
,
Schoendorf
,
J.
, and
Rabitz
,
H.
, 2006, “
Random Sampling-High Dimensional Model Representation (RS-HDMR) and Orthogonality of Its Different Order Component Functions
,”
J. Phys. Chem. A
1089-5639,
110
(
7
), pp.
2474
2485
.
18.
Wang
,
S. -W.
,
Georgopoulos
,
P. G.
,
Li
,
G.
, and
Rabits
,
H.
, 2003, “
Random Sampling-High Dimensional Model Representation (RS-HDMR) With Nonuniformly Distributed Variables: Application to an Integrated Multimedia/Multipathway Exposure and Dose Model for Trichloroethylene
,”
J. Phys. Chem. A
1089-5639,
107
(
23
), pp.
4707
4716
.
19.
Tunga
,
M. A.
, and
Demiralp
,
M.
, 2005, “
A Factorized High Dimensional Model Representation on the Nodes of a Finite Hyperprismatic Regular Grid
,”
Appl. Math. Comput.
0096-3003,
164
(
3
), pp.
865
883
.
20.
Tunga
,
M. A.
, and
Demiralp
,
M.
, 2006, “
Hybrid High Dimensional Model Representation (HDMR) on the Partitioned Data
,”
J. Comput. Appl. Math.
0377-0427,
185
(
1
), pp.
107
132
.
21.
Sobol’
,
I. M.
, 2003, “
Theorems and Examples on High Dimensional Model Representation
,”
Reliab. Eng. Syst. Saf.
0951-8320,
79
, pp.
187
193
.
22.
Shan
,
S.
, and
Wang
,
G. G.
, 2010, “
Survey of Modeling and Optimization Strategies to Solve High-Dimensional Design Problems With Computationally-Expensive Black-Box Functions
,”
Struct. Multidiscip. Optim.
1615-147X,
41
(
2
), pp.
219
241
.
23.
Lin
,
Y.
, 2004, “
An Efficient Robust Concept Exploration Method and Sequential Exploratory Experimental Design
,” Ph.D. thesis, Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
24.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
, 2005, “
An Efficient Algorithm for Constructing Optimal Design of Computer Experiments
,”
J. Stat. Plan. Infer.
0378-3758,
134
(
1
), pp.
268
287
.
25.
Sasena
,
M.
,
Parkinson
,
M.
,
Goovaerts
,
P.
,
Papalambros
,
P.
, and
Reed
,
M.
, 2002, “
Adaptive Experimental Design Applied to an Ergonomics Testing Procedure
,”
Proceedings of the ASME 2002 Design Engineering Technical Conferences and Computer and Information in Engineering Conference
, Montreal, Canada.
26.
Wang
,
G. G.
, 2003, “
Adaptive Response Surface Method Using Inherited Latin Hypercube Design Points
,”
ASME J. Mech. Des.
0161-8458,
125
, pp.
210
220
.
27.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
, 2002, “
On Sequential Sampling for Global Metamodeling in Engineering Design
,”
Proceedings of the ASME 2002 Design Engineering Technical Conferences and Computer and Information in Engineering Conference
, Montreal, Canada.
28.
Owen
,
A. B.
, 2000, “
Assessing Linearity in High Dimensions
,”
Ann. Stat.
0090-5364,
28
(
1
), pp.
1
19
.
29.
Baxter
,
B. J. C.
, 1992, “
The Interpolation Theory of Radial Basis Functions
,” Ph. D. thesis, Trinity College, University of Cambridge, Cambridge, UK.
You do not currently have access to this content.