The design of direct driven turbomachinery is an interdisciplinary task. Standard design procedures propose to split such systems into subcomponents and to design each one individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported rotors. Based on the choice for herringbone grooved journal and spiral groove thrust bearings, the modeling procedure for predicting their properties and the linking to the rotordynamic behavior of a generic rotor supported on gas lubricated bearings is provided. The global model for gas bearing supported rotors is linked to a multiobjective optimizer for maximizing the dynamic stability and for minimizing the windage losses of the rotor and of the bearings. Two typical rotor layouts have been included in the optimization. The geometry of a proof of concept system, that has been designed previously using the fragmented component view, is represented as a comparison to the proposed integrated approach. It is shown that the integrated solution allows to reduce the windage losses by 25% or to increase the stability margin by 35%, emphasizing the advantage of the proposed integrated design tool.

1.
Mehra
,
A.
,
Jacobson
,
S. A.
,
Tan
,
C. S.
, and
Epstein
,
A. H.
, 1998, “
Aerodynamic Design Considerations for the Turbomachinery of a Micro Gas Turbine Engine
,”
The 25th National and First International Conference on Fluid Mechanics and Fluid Power
.
2.
Frechette
,
L. G.
,
Jacobson
,
S. A.
,
Breuer
,
K. S.
,
Ehrich
,
F. F.
,
Ghodssi
,
R.
,
Khanna
,
R.
,
Wong
,
C. W.
,
Zhang
,
X.
,
Schmidt
,
M. A.
, and
Epstein
,
A. H.
, 2000, “
Demonstration of a Microfabricated High-Speed Turbine Supported on Gas Bearings
,”
Solid-State Sensor and Actuator Workshop
.
3.
Epstein
,
A. H.
, 2004, “
Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
2
), pp.
205
225
.
4.
Isomura
,
K.
,
Murayama
,
M.
, and
Kawakubo
,
T.
, 2001, “
Feasibility Study of a Gas Turbine at Micro Scale
,”
ASME
Paper No. 2001-GT-0101.
5.
Isomura
,
K.
,
Murayama
,
M.
,
Teramoto
,
S.
,
Hikichi
,
K.
,
Endo
,
Y.
,
Togo
,
S.
, and
Tanaka
,
S.
, 2006, “
Experimental Verification of the Feasibility of 100 W Class Micro-Scale Gas Turbine at an Impeller Diameter of 10 mm
,”
J. Micromech. Microeng.
0960-1317,
16
(
9
), pp.
S254
S261
.
6.
Johnston
,
J. P.
,
Kang
,
S.
,
Arima
,
T.
,
Matsunaga
,
M.
,
Tsuru
,
H.
, and
Prinz
,
F. B.
, 2003, “
Performance of a Micro-Scale Radial-Flow Compressor Impeller Made of Silicon Nitride
,”
International Gas Turbine Congress
, Paper No. IGTC2003tokyo OS-110.
7.
Kang
,
S.
,
Johnston
,
J. P.
,
Arima
,
T.
,
Matsunaga
,
M.
,
Tsuru
,
H.
, and
Printz
,
F. B.
, 2004, “
Microscale Radial-Flow Compressor Impeller Made of Silicon Nitride: Manufacturing and Performance
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
2
), pp.
358
365
.
8.
Autissier
,
N.
,
Palazzi
,
F.
,
Marechal
,
F.
,
Herle
,
J. V.
, and
Favrat
,
D.
, 2007, “
Thermo-Economic Optimization of a Solid Oxide Fuel Cell, Gas Turbine Hybrid Systems
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
4
(
2
), pp.
123
129
.
9.
Schiffmann
,
J.
,
Molyneaux
,
A.
,
Favrat
,
D.
,
Maréchal
,
F.
,
Zehnder
,
M.
, and
Godat
,
J.
, 2002, “
Compresseur radial pour pompe à chaleur biétagée, phase 1
,” OFEN Technical Report No. 220195, Swiss Federal Office for Energy.
10.
Schiffmann
,
J.
, and
Favrat
,
D.
, 2009, “
Experimental Investigation of a Direct Driven Radial Compressor for Domestic Heat Pumps
,”
Int. J. Refrig.
0140-7007,
32
(
8
), pp.
1918
1928
.
11.
VDI
, 1993, “
Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte
,” Technical Report No. Richtlinie-2221.
12.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K. -H.
, 2007,
Konstruktionslehre—Grundlagen erfolgreicher Produkteentwicklung. Methoden und Anwendung, 7
,
Springer-Verlag
,
Berlin
.
13.
Jarrett
,
J. P.
,
Dawes
,
W. N.
, and
Clarkson
,
P. J.
, 2007, “
An Approach to Integrated Multi-Disciplinary Turbomachinery Design
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
488
494
.
14.
Jarrett
,
J.
, and
Clarkson
,
P. J.
, 2002, “
The Surge-Stagnate Model for Complex Design
,”
J. Eng. Design
0954-4828,
13
(
3
), pp.
189
196
.
15.
Kudikala
,
R.
,
Kalyanmoy
,
D.
, and
Bhattacharya
,
B.
, 2009, “
Multi-Objective Optimization of Piezoelectric Actuator Placement for Shape Control Of Plates Using Genetic Algorithms
,”
ASME J. Mech. Des.
0161-8458,
131
(
9
), pp.
091007
.
16.
Rao
,
A. R.
,
Scanlan
,
J. P.
, and
Keane
,
A. J.
, 2007, “
Applying Multiobjective Cost and Weight Optimization to the Initial Design of Turbine Disks
,”
ASME J. Mech. Des.
0161-8458,
129
(
12
), pp.
1303
1310
.
17.
Schiffmann
,
J.
, and
Favrat
,
D.
, 2010, “
Design, Experimental Investigation and Multi-Objective Optimization of a Small-Scale Radial Compressor for Heat Pump Applications
,”
Energy
0360-5442,
35
(
1
), pp.
436
450
.
18.
Bonneau
,
D.
, and
Absi
,
J.
, 1994, “
Analysis of Aerodynamic Journal Bearings With Small Number of Herringbone Grooves by Finite Element Method
,”
ASME J. Tribol.
0742-4787,
116
, pp.
698
704
.
19.
Faria
,
M. D.
, 1999, “
Finite Element Analysis of High Speed Grooved Gas Bearings
,” Ph.D. thesis, Texas A&M University.
20.
Vohr
,
J.
, and
Chow
,
C.
, 1965, “
Characteristics of Herringbone-Grooved, Gas-Lubricated Journal Bearings
,”
ASME J. Basic Eng.
0021-9223,
87
, pp.
568
578
.
21.
Malanoski
,
S. B.
, 1967, “
Experiments on an Ultrastable Gas Journal Bearing
,”
ASME J. Lubr. Technol.
0022-2305,
89
, pp.
433
438
.
22.
Cunningham
,
R.
,
Fleming
,
D.
, and
Anderson
,
W.
, 1971, “
Experimental Load Capacity and Power Loss of Herringbone Grooved Gas Lubricated Journal Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
93
, pp.
415
422
.
23.
Schiffmann
,
J.
, 2008, “
Integrated Design, Optimization and Experimental Investigation of a Direct Driven Turbocompressor for Domestic Heat Pumps
,” Ph.D. thesis, Ecole Polytechnique Federale de Lausanne.
24.
Whipple
,
R. T. P.
, 1958, “
The Inclined Groove Bearing
,” United Kingdom Atomic Energy Authority, Research Group, Atomic Energy Establishment, Harwell, Berkshire.
25.
Muijderman
,
E.
, 1964, “
Spiral Groove Bearings
,” Ph.D. thesis, Technological University of Delpht.
26.
Malanoski
,
S. B.
, and
Pan
,
C.
, 1965, “
The Static and Dynamic Characteristics of the Spiral-Grooved Thrust Bearing
,”
ASME J. Basic Eng.
0021-9223,
87
, pp.
547
558
.
27.
Zirkelback
,
N.
, and
Andres
,
L. S.
, 1999, “
Effect of Frequency Excitation on Force Coefficients of Spiral Groove Gas Seals
,”
ASME J. Tribol.
0742-4787,
121
, pp.
853
863
.
28.
Mack
,
M.
, 1967, “
Luftreibungsverluste bei elektrischen Maschinen kleiner Baugrösse
,” Ph.D. thesis, Universität Stuttgart (FH).
29.
Beitz
,
W.
, and
Küttner
,
K. -H.
, 1990, “
Dubbel
,” Taschenbuch für den Maschinenbau.
30.
Incropera
,
F. P.
, and
Witt
,
D. P. D.
, 1996,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
Wiley
,
New York
.
31.
Schiffmann
,
J.
, and
Favrat
,
D.
, 2006, “
Multi-Objective Optimization of Herringbone Grooved Gas Bearings Supporting a High-Speed Rotor, Taking Into Account Rarefied Gas and Real Gas Effects
,”
ASME
Paper No.ESDA-95086.
32.
Ehrich
,
F.
, 2004,
Handbook of Rotordynamics
,
Krieger
,
Malabar, FL
.
33.
Pan
,
C.
, 1964, “
Spectral Analysis of Gas Bearing Systems for Stability Studies
,” Technical Report No. 64TR58, MTI.
34.
Tappeta
,
R. V.
, and
Renaud
,
J. E.
, 2001, “
Interactive Multiobjective Optimization Design Strategy for Decision Based Design
,”
ASME J. Mech. Des.
0161-8458,
123
(
2
), pp.
205
215
.
35.
Molyneaux
,
A.
, 2002, “
A Practical Evolutionary Method for the Multi-Objective Optimization of Complex Energy Systems, Including Vehicle Drivetrains
,” Ph.D. thesis, Ecole Polytechnique Federale de Lausanne.
36.
Leyland
,
G.
, 2002, “
Multi-Objective Optimization Applied to Industrial Energy Problems
,” Ph.D. thesis, Ecole Polytechnique Federale de Lausanne.
You do not currently have access to this content.