Analytical target cascading (ATC) is a method developed originally for translating system-level design targets to design specifications for the components that comprise the system. ATC has been shown to be useful for coordinating decomposition-based optimal system design. The traditional ATC formulation uses hierarchical problem decompositions, in which coordination is performed by communicating target and response values between parents and children. The hierarchical formulation may not be suitable for general multidisciplinary design optimization (MDO) problems. This paper presents a new ATC formulation that allows nonhierarchical target-response coupling between subproblems and introduces system-wide functions that depend on variables of two or more subproblems. Options to parallelize the subproblem optimizations are also provided, including a new bilevel coordination strategy that uses a master problem formulation. The new formulation increases the applicability of the ATC to both decomposition-based optimal system design and MDO. Moreover, it belongs to the class of augmented Lagrangian coordination methods, having thus convergence properties under standard convexity and continuity assumptions. A supersonic business jet design problem is used to demonstrate the flexibility and effectiveness of the presented formulation.

1.
Braun
,
R. D.
, 1996, “
Collaborative Optimization: An Architecture for Large-Scale Distributed Design
,” Ph.D. thesis, Stanford University, Stanford, CA.
2.
Braun
,
R. D.
,
Moore
,
A. A.
, and
Kroo
,
I. M.
, 1997, “
Collaborative Approach to Launch Vehicle Design
,”
J. Spacecr. Rockets
0022-4650,
34
(
4
), pp.
478
486
.
3.
Lin
,
J.
, 2004, “
Analysis and Enhancement of Collaborative Optimization for Multidisciplinary Design
,”
AIAA J.
0001-1452,
42
(
2
), pp.
348
360
.
4.
Roth
,
B. D.
, and
Kroo
,
I. M.
, 2008, “
Enhanced Collaborative Optimization: A Decomposition-Based Method for Multidisciplinary Design
,”
Proceedings of the ASME Design Engineering Technical Conferences
, Brooklyn, NY.
5.
Sobieszczanski-Sobieski
,
J.
,
Agte
,
J. S.
, and
Sandusky
,
R. R.
, Jr.
, 2000, “
Bilevel Integrated System Synthesis
,”
AIAA J.
0001-1452,
38
(
1
), pp.
164
172
.
6.
Sobieszczanski-Sobieski
,
J.
,
Altus
,
T. D.
,
Phillips
,
M.
, and
Sandusky
,
R. R.
, Jr.
, 2003, “
Bilevel Integrated System Synthesis for Concurrent and Distributed Processing
,”
AIAA J.
0001-1452,
41
(
10
), pp.
1996
2003
.
7.
Haftka
,
R. T.
, and
Watson
,
L. T.
, 2005, “
Multidisciplinary Design Optimization With Quasiseparable Subsystems
,”
Optim. Eng.
1389-4420,
6
(
1
), pp.
9
20
.
8.
DeMiguel
,
A. V.
, and
Murray
,
W.
, 2006, “
A Local Convergence Analysis of Bilevel Decomposition Algorithms
,”
Optim. Eng.
1389-4420,
7
(
2
), pp.
99
133
.
9.
DeMiguel
,
A. V.
, and
Nogales
,
F. J.
, 2008, “
On Decomposition Methods for a Class of Partially Separable Nonlinear Programs
,”
Math. Oper. Res.
,
33
(
1
), pp.
119
139
.
10.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
, 2007, “
An Augmented Lagrangian Decomposition Method for Quasi-Separable Problems in MDO
,”
Struct. Multidiscip. Optim.
1615-147X,
34
(
3
), pp.
211
227
.
11.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
, 2008, “
Augmented Lagrangian Coordination for Distributed Optimal Design in MDO
,”
Int. J. Numer. Methods Eng.
0029-5981,
73
(
13
), pp.
1885
1910
.
12.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
, 2009, “
Block-Separable Linking Constraints in Augmented Lagrangian Coordination
,”
Struct. Multidiscip. Optim.
1615-147X,
37
(
5
), pp.
521
527
.
13.
Balling
,
R. J.
, and
Sobieszczanski-Sobieski
,
J.
, 1996, “
Optimization of Coupled Systems: A Critical Overview of Approaches
,”
AIAA J.
0001-1452,
34
(
1
), pp.
6
17
.
14.
Sobieszczanski-Sobieski
,
J.
, and
Haftka
,
R. T.
, 1997, “
Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments
,”
Struct. Optim.
0934-4373,
14
(
1
), pp.
1
23
.
15.
Alexandrov
,
N. M.
, and
Lewis
,
R. M.
, 1999, “
Comparative Properties of Collaborative Optimization and Other Approaches to MDO
,”
ASMO UK/ISSMO Conference on Engineering Design Optimization
,
MCB University Press
,
Bradford, UK
, pp.
39
46
.
16.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
, 2009, “
A Classification of Methods for Distributed System Optimization Based on Formulation Structure
,”
Struct. Multidiscip. Optim.
1615-147X,
39
, pp.
503
517
.
17.
Michelena
,
N.
,
Kim
,
H. M.
, and
Papalambros
,
P. Y.
, 1999, “
A System Partitioning and Optimization Approach to Target Cascading
,”
Proceedings of the 12th International Conference on Engineering Design
, Munich, Germany.
18.
Kim
,
H. M.
, 2001, “
Target Cascading in Optimal System Design
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
19.
Michelena
,
N. F.
,
Park
,
H.
, and
Papalambros
,
P. Y.
, 2003, “
Convergence Properties of Analytical Target Cascading
,”
AIAA J.
0001-1452,
41
(
5
), pp.
897
905
.
20.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
, 2003, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
474
480
.
21.
Michalek
,
J. J.
, and
Papalambros
,
P. Y.
, 2005, “
Technical Brief: Weights, Norms, and Notation in Analytical Target Cascading
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
499
501
.
22.
Allison
,
J. T.
,
Kokkolaras
,
M.
,
Zawislak
,
M. R.
, and
Papalambros
,
P. Y.
, 2005, “
On the Use of Analytical Target Cascading and Collaborative Optimization for Complex System Design
,”
Proceedings of the Sixth World Congress on Structural and Multidisciplinary Optimization
, Rio de Janeiro, Brazil.
23.
Tosserams
,
S.
,
Etman
,
L. F. P.
,
Papalambros
,
P. Y.
, and
Rooda
,
J. E.
, 2006, “
An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Direction Method of Multipliers
,”
Struct. Multidiscip. Optim.
1615-147X,
31
(
3
), pp.
176
189
.
24.
Kim
,
H. M.
,
Chen
,
W.
, and
Wiecek
,
M. M.
, 2006, “
Lagrangian Coordination for Enhancing the Convergence of Analytical Target Cascading
,”
AIAA J.
0001-1452,
44
(
10
), pp.
2197
2207
.
25.
Agte
,
J. S.
,
Sobieszczanski-Sobieski
,
J.
, and
Sandusky
,
R. R. J.
, 1999, “
Supersonic Business Jet Design Through Bilevel Integrated System Synthesis
,”
Proceedings of the World Aviation Conference
, San Francisco, CA,
MCB University Press
,
Bradford, UK
, SAE Paper No. 1999-01-5622.
26.
Allison
,
J. T.
, and
Papalambros
,
P. Y.
, 2008, “
Consistency Constraint Allocation in Augmented Lagrangian Coordination
,”
Proceedings of the ASME Design Engineering Technical Conferences
, Brooklyn, NY.
27.
Kokkolaras
,
M.
,
Fellini
,
R.
,
Kim
,
H. M.
,
Michelena
,
N. F.
, and
Papalambros
,
P. Y.
, 2002, “
Extension of the Target Cascading Formulation to the Design of Product Families
,”
Struct. Multidiscip. Optim.
1615-147X,
24
(
4
), pp.
293
301
.
28.
Bertsekas
,
D. P.
, 2003,
Nonlinear Programming
,
2nd ed.
, 2nd printing,
Athena Scientific
,
Belmont, MA
.
29.
Michalek
,
J. J.
, and
Papalambros
,
P. Y.
, 2005, “
An Efficient Weighting Update Method to Achieve Acceptable Inconsistency Deviation in Analytical Target Cascading
,”
ASME J. Mech. Des.
0161-8458,
127
(
2
), pp.
206
214
.
30.
Bertsekas
,
D. P.
, and
Tsitsiklis
,
J. N.
, 1989,
Parallel and Distributed Computation
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
31.
Li
,
Y.
,
Lu
,
Z.
, and
Michalek
,
J. J.
, 2008, “
Diagonal Quadratic Approximation for Parallelization of Analytical Target Cascading
,”
ASME J. Mech. Des.
0161-8458,
130
(
5
), p.
051402
.
32.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
, 2008, “
Numerical Performance Evaluation for Augmented Lagrangian Coordination for Distributed Multidisciplinary Design Optimization
,”
Proceedings of the Fourth AIAA Multidisciplinary Design Optimization Specialist Conference
, Schaumburg, IL, AIAA Paper No. 2008-1805.
33.
Cramer
,
E. J.
,
Dennis
,
J. E.
,
Frank
,
P. D.
,
Lewis
,
R. M.
, and
Shubin
,
G. R.
, 1994, “
Problem Formulation for Multidisciplinary Optimization
,”
SIAM J. Optim.
1052-6234,
4
(
4
), pp.
754
776
.
34.
Mathworks
, 2008, MATLAB User Guide, Version 7, Mathworks Inc., Natick, MA.
35.
Michelena
,
N. F.
, and
Papalambros
,
P. Y.
, 1997, “
A Hypergraph Framework for Optimal Model-Based Decomposition of Design Problems
,”
Comput. Optim. Appl.
0926-6003,
8
(
2
), pp.
173
196
.
36.
Li
,
S.
, and
Chen
,
L.
, 2006, “
Model-Based Decomposition Using Non-Binary Dependency Analysis and Heuristic Partitioning Analysis
,”
Proceedings of the ASME Design Engineering Technical Conferences
, Philadelphia, PA.
37.
Allison
,
J. T.
,
Kokkolaras
,
M.
, and
Papalambros
,
P. Y.
, 2007, “
Optimal Partitioning and Coordination Decisions in System Design Using an Evolutionary Algorithm
,”
Proceedings of the Seventh World Congress on Structural and Multidisciplinary Optimization
, Seoul, South Korea.
38.
Allison
,
J. T.
,
Kokkolaras
,
M.
, and
Papalambros
,
P. Y.
, 2009, “
Optimal Partitioning and Coordination Decisions in Decomposition-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
131
(
8
), p.
081008
.
You do not currently have access to this content.