Analytical target cascading (ATC) is a multidisciplinary design optimization method for multilevel hierarchical systems. To improve computational efficiency, especially for problems under uncertainty or with strong monotonicity, a sequential linear programming (SLP) algorithm was previously employed as an alternate coordination strategy to solve ATC and probabilistic ATC problems. The SLP implementation utilizes L norms to maintain the linearity of SLP subsequences. This note offers a proof that there exists a set of weights such that the ATC algorithm converges when L norms are used. Examples are also provided to illustrate the effectiveness of using L norms as a penalty function to maintain the formulation linear and differentiable. The examples show that the proposed method provides more robust results for linearized ATC problems due to the robustness of the linear programming solver.

1.
Alexandrov
,
N. M.
, and
Lewis
,
R. M.
, 2002, “
Analytical and Computational Aspects of Collaborative Optimization for Multidisciplinary Design
,”
AIAA J.
0001-1452,
40
(
2
), pp.
301
309
.
2.
Balling
,
R.
, and
Sobieszczanski-Sobieski
,
J.
, 1996, “
Optimization of Coupled Systems: A Critical Overview of Approaches
,”
AIAA J.
0001-1452,
34
(
1
), pp.
6
17
.
3.
Braun
,
R.
,
Kroo
,
I.
, and
Moore
,
A.
, 1996, “
Use of the Collaborative Optimization Architecture for Launch Vehicle Design
,”
Proceedings of the Sixth AIAA, NASA, and ISSMO, Symposium on Multidisciplinary Analysis and Optimization
, Bellevue, WA, Sept. 4–6, pp.
306
318
.
4.
Cramer
,
E. J.
,
Dennis
,
J. E.
, Jr.
,
Frank
,
P. D.
,
Lewis
,
R. M.
, and
Shubin
,
G. R.
, 1994, “
Problem Formulation for Multidisciplinary Optimization
,”
SIAM J. Optim.
1052-6234,
4
(
4
), pp.
754
776
.
5.
Kodiyalam
,
S.
, and
Sobieszczanski-Sobieski
,
J.
, 2000, “
Bilevel Integrated System Synthesis With Response Surfaces
,”
AIAA J.
0001-1452,
38
(
8
), pp.
1479
1485
.
6.
Sellar
,
R. S.
,
Batill
,
S. M.
, and
Renaud
,
J. E.
, 1996, “
Response Surface Based, Concurrent Subspace Optimization for Multidisciplinary System Design
,”
34th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 15–18, Paper No. AIAA-1996-714.
7.
Sobieski
,
I.
, and
Kroo
,
I.
, 2000, “
Collaborative Optimization Using Response Surface Estimation
,”
AIAA J.
0001-1452,
38
(
10
), pp.
1931
1938
.
8.
Tappeta
,
R.
, and
Renaud
,
J.
, 1997, “
Multiobjective Collaborative Optimization
,”
ASME J. Mech. Des.
0161-8458,
119
(
3
), pp.
403
411
.
9.
Kim
,
H. M.
,
Michelena
,
N.
,
Papalambros
,
P.
, and
Jiang
,
T.
, 2003, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
474
480
.
10.
Kokkolaras
,
M.
,
Mourelatos
,
Z. P.
, and
Papalambros
,
P. Y.
, 2006, “
Design Optimization of Hierarchically Decomposed Multilevel Systems Under Uncertainty
,”
ASME J. Mech. Des.
0161-8458,
128
(
2
), pp.
503
508
.
11.
Bertsekas
,
D. P.
, 1999,
Nonlinear Programming
,
2nd ed.
,
Athena
,
Belmont, MA
.
12.
Michalek
,
J.
, and
Papalambros
,
P.
, 2005, “
An Efficient Weighting Update Method to Achieve Acceptable Consistency Deviation in Analytical Target Cascading
,”
ASME J. Mech. Des.
0161-8458,
127
(
2
), pp.
206
214
.
13.
Tosserams
,
S.
,
Etman
,
L.
,
Papalambros
,
P.
, and
Rooda
,
J.
, 2006, “
An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Direction Method of Multipliers
,”
Struct. Multidiscip. Optim.
1615-147X,
31
(
3
), pp.
176
189
.
14.
Lassiter
,
J. B.
,
Wiecek
,
M. M.
, and
Andrighetti
,
K. R.
, 2005, “
Lagrangian Coordination and Analytical Target Cascading: Solving ATC-Decomposed Problems With Lagrangian Duality
,”
Optim. Eng.
1389-4420,
6
(
3
), pp.
361
381
.
15.
Kim
,
H. M.
,
Chen
,
W.
, and
Wiecek
,
M. M.
, 2006, “
Lagrangian Coordination for Enhancing the Convergence of Analytical Target Cascading
,”
AIAA J.
0001-1452,
44
(
10
), pp.
2197
2207
.
16.
Li
,
Y.
,
Lu
,
Z.
, and
Michalek
,
J. J.
, 2008, “
Diagonal Quadratic Approximation for Parallelization of Analytical Target Cascading
,”
ASME J. Mech. Des.
0161-8458,
130
(
5
), p.
051402
.
17.
Fletcher
,
R.
,
Leyffer
,
S.
, and
Toint
,
P.
, 1998, “
On the Global Convergence of an SLP-Filter Algorithm
,” Numerical Analysis Report No. NA/183.
18.
Han
,
J.
, 2008, “
Sequential Linear Programming Coordination Strategy for Deterministic and Probabilistic Analytical Target Cascading
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
19.
Han
,
J.
, and
Papalambros
,
P. Y.
, 2010, “
A Sequential Linear Programming Coordination Algorithm for Analytical Target Cascading
,”
ASME J. Mech. Des.
0161-8458,
132
(
2
), p.
021003
.
20.
Han
,
J.
, and
Papalambros
,
P. Y.
, 2010, “
An SLP Filter Algorithm for Probabilistic Analytical Target Cascading
,”
Struct. Multidiscip. Optim.
1615-147X, in press.
21.
Papalambros
,
P.
, and
Wilde
,
D.
, 2000,
Principles of Optimal Design: Modeling and Computation
,
2nd ed.
,
Cambridge University Press
,
Cambridge
.
22.
Michelena
,
N.
,
Park
,
H.
, and
Papalambros
,
P. Y.
, 2003, “
Convergence Properties of Analytical Target Cascading
,”
AIAA J.
0001-1452,
41
(
5
), pp.
897
905
.
You do not currently have access to this content.