This paper demonstrates the design of compliant grip-and-move manipulators by structural optimization using genetic algorithms. The manipulator is composed of two compliant mechanisms (each with two degrees of freedom) that work like two fingers so that the manipulator can grip an object and convey it from one point to another anywhere within a two-dimensional workspace. The synthesis of such compliant mechanisms is accomplished by formulating the problem as a structural topology and shape optimization problem with multiple objectives and constraints to achieve the desired behavior of the manipulator. A multiobjective genetic algorithm is then applied coupled with an enhanced morphological representation for defining and encoding the structural geometry variables. The solution framework is integrated with a nonlinear finite element code for large-displacement analyses of the compliant structures to compute the paths generated by these mechanisms, with the resulting optimal designs used to realize various manipulator configurations.

1.
Dollar
,
A. M.
, and
Howe
,
R. D.
, 2006, “
A Robust Compliant Grasper Via Shape Deposition Manufacturing
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
11
(
2
), pp.
154
161
.
2.
Tsai
,
Y. -C.
,
Lei
,
S. H.
, and
Sudin
,
H.
, 2005, “
Design and Analysis of Planar Compliant Microgripper Based on Kinematic Approach
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
143
156
.
3.
Bertetto
,
A. M.
, and
Ruggiu
,
M.
, 2003, “
A Two Degree of Freedom Gripper Actuated by SMA With Flexure Hinges
,”
J. Rob. Syst.
0741-2223,
20
(
11
), pp.
649
657
.
4.
Goldfarb
,
M.
, and
Celanovic
,
N.
, 1999, “
A Flexure-Based Gripper for Small-Scale Manipulation
,”
Robotica
0263-5747,
17
, pp.
181
187
.
5.
Lu
,
K. -J.
, and
Kota
,
S.
, 2006, “
Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization
,”
ASME J. Mech. Des.
0161-8458,
128
(
5
), pp.
1080
1091
.
6.
Hull
,
P. V.
, and
Canfield
,
S.
, 2006, “
Optimal Synthesis of Compliant Mechanisms Using Subdivision and Commercial FEA
,”
ASME J. Mech. Des.
0161-8458,
128
(
2
), pp.
337
348
.
7.
Zhou
,
H.
, and
Ting
,
K. -L.
, 2006, “
Shape and Size Synthesis of Compliant Mechanisms Using Wide Curve Theory
,”
ASME J. Mech. Des.
0161-8458,
128
(
3
), pp.
551
558
.
8.
Zhou
,
H.
, and
Ting
,
K. -L.
, 2005, “
Topological Synthesis of Compliant Mechanisms Using Spanning Tree Theory
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
753
759
.
9.
Rahmatalla
,
S.
, and
Swan
,
C. C.
, 2005, “
Sparse Monolithic Compliant Mechanisms Using Continuum Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
(
12
), pp.
1579
1605
.
10.
Joo
,
J.
, and
Kota
,
S.
, 2004, “
Topological Synthesis of Compliant Mechanisms Using Nonlinear Beam Elements
,”
Mech. Based Des. Struct. Mach.
1539-7734,
32
(
1
), pp.
17
38
.
11.
Yoon
,
G. H.
,
Kim
,
Y. Y.
,
Bendsoe
,
M. P.
, and
Sigmund
,
O.
, 2004, “
Hinge-Free Topology Optimization With Embedded Translation-Invariant Differentiable Wavelet Shrinkage
,”
Struct. Multidiscip. Optim.
1615-147X,
27
(
3
), pp.
139
150
.
12.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
(
12
), pp.
2683
2705
.
13.
Larsen
,
U. D.
,
Signund
,
O.
, and
Bouwstra
,
S.
, 1997, “
Design and Fabrication of Compliant Micromechanisms and Structures With Negative Poisson’s Ratio
,”
J. Microelectromech. Syst.
1057-7157,
6
(
2
), pp.
99
106
.
14.
Frecker
,
M. I.
,
Powell
,
K. M.
, and
Haluck
,
R.
, 2005, “
Design of a Multifunctional Compliant Instrument for Minimally Invasive Surgery
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
6
), pp.
990
993
.
15.
Kota
,
S.
,
Lu
,
K. -J.
,
Kreiner
,
Z.
,
Trease
,
B.
,
Arenas
,
J.
, and
Geiger
,
J.
, 2005, “
Design and Application of Compliant Mechanisms for Surgical Tools
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
6
), pp.
981
989
.
16.
Chronis
,
N.
, and
Lee
,
L. P.
, 2005, “
Electrothermally Activated SU-8 Microgripper for Single Cell Manipulation in Solution
,”
J. Microelectromech. Syst.
1057-7157,
14
(
4
), pp.
857
863
.
17.
Bernardoni
,
P.
,
Riwan
,
A.
,
Tsitsiris
,
H.
,
Millet
,
O.
,
Buchaillot
,
L.
,
Regnier
,
S.
, and
Bidaud
,
P.
, 2004. “
From the Mechanical Analysis of a Polyarticulated Microgripper to the Design of a Compliant Microgripper
,”
Smart Structures and Materials 2004. Modeling, Signal Processing, and Control
, San Deigo, CA, Mar. 15–18, Vol.
5383
, pp.
469
477
.
18.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2004, “
Topology Optimization for Synthesis of Contact-Aided Compliant Mechanisms Using Regularized Contact Modeling
,”
Comput. Struct.
0045-7949,
82
(
15–16
), pp.
1267
1290
.
19.
Wang
,
N. F.
, and
Tai
,
K.
, 2008, “
Design of Grip-and-Move Manipulators Using Symmetric Path Generating Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
130
(
11
),
112305
.
20.
Reyes Rodriguez
,
B.
, 2001. “
Study of the Degrees of Freedom Equations in the Compliant Mechanism Design
,”
Proceedings of the Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing (EcoDesign 2001)
, pp.
202
207
.
21.
Sigmund
,
O.
, 2001, “
Design of Multiphysics Actuators Using Topology Optimization—Part II: Two-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
49–50
), pp.
6605
6627
.
22.
Bernardoni
,
P.
,
Bidaud
,
P.
,
Bidard
,
C.
, and
Gosselin
,
F.
, 2004. “
A New Compliant Mechanism Design Methodology Based on Flexible Building Blocks
,”
Smart Structures and Materials 2004. Modeling, Signal Processing, and Control
, San Deigo, CA, Mar. 15–18, Vol.
5383
, pp.
244
254
.
23.
Awtar
,
S.
, and
Slocum
,
A. H.
, 2007, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
129
(
8
), pp.
816
830
.
24.
Tai
,
K.
,
Wang
,
N. F.
, and
Yang
,
Y. W.
, 2008. “
Hybrid GA Multiobjective Optimization for the Design of Compliant Micro-Actuators
,”
Proceedings of the 2008 IEEE International Conference on Systems, Man, and Cybernetics
, Singapore, Oct. 12–15, pp.
559
564
.
25.
Tai
,
K.
, and
Prasad
,
J.
, 2007, “
Target-Matching Test Problem for Multiobjective Topology Optimization Using Genetic Algorithms
,”
Struct. Multidiscip. Optim.
1615-147X,
34
(
4
), pp.
333
345
.
26.
Tai
,
K.
, and
Akhtar
,
S.
, 2005, “
Structural Topology Optimization Using a Genetic Algorithm With a Morphological Geometric Representation Scheme
,”
Struct. Multidiscip. Optim.
1615-147X,
30
(
2
), pp.
113
127
.
27.
Wang
,
S. Y.
, and
Tai
,
K.
, 2004, “
Graph Representation for Structural Topology Optimization Using Genetic Algorithms
,”
Comput. Struct.
0045-7949,
82
(
20–21
), pp.
1609
1622
.
28.
Tai
,
K.
,
Cui
,
G. Y.
, and
Ray
,
T.
, 2002, “
Design Synthesis of Path Generating Compliant Mechanisms by Evolutionary Optimization of Topology and Shape
,”
ASME J. Mech. Des.
0161-8458,
124
(
3
), pp.
492
500
.
29.
Cui
,
G. Y.
,
Tai
,
K.
, and
Wang
,
B. P.
, 2002, “
Topology Optimization for Maximum Natural Frequency Using Simulated Annealing and Morphological Representation
,”
AIAA J.
0001-1452,
40
(
3
), pp.
586
589
.
30.
Tai
,
K.
, and
Chee
,
T. H.
, 2000, “
Design of Structures and Compliant Mechanisms by Evolutionary Optimization of Morphological Representations of Topology
,”
ASME J. Mech. Des.
0161-8458,
122
(
4
), pp.
560
566
.
31.
Wang
,
N. F.
, and
Tai
,
K.
, “Target Geometry Matching Problems and an Adaptive Constraint Strategy for Multiobjective Design Optimization Using GA,” Comput. Struct., submitted.
32.
Chartrand
,
G.
, and
Lesniak
,
L.
, 2005,
Graphs and Diagraphs
,
4th ed.
,
Chapman and Hall
,
London
/
CRC Press
,
Boca Raton, FL
.
33.
Wang
,
S. Y.
,
Tai
,
K.
, and
Wang
,
M. Y.
, 2006, “
An Enhanced Genetic Algorithm for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
65
(
1
), pp.
18
44
.
34.
Wang
,
S. Y.
,
Tai
,
K.
, and
Quek
,
S. T.
, 2006, “
Topology Optimization of Piezoelectric Sensors/Actuators for Torsional Vibration Control of Composite Plates
,”
Smart Mater. Struct.
0964-1726,
15
(
2
), pp.
253
269
.
35.
Wang
,
S. Y.
, and
Tai
,
K.
, 2005, “
Structural Topology Design Optimization Using Genetic Algorithms With a Bit-Array Representation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
(
36–38
), pp.
3749
3770
.
36.
Deb
,
K.
, 2001,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
Chichester
.
37.
Ray
,
T.
,
Tai
,
K.
, and
Seow
,
K. C.
, 2001, “
Multiobjective Design Optimization by an Evolutionary Algorithm
,”
Eng. Optim.
,
33
(
4
), pp.
399
424
.
38.
Wang
,
N. F.
, and
Tai
,
K.
, 2007. “
Handling Objectives as Adaptive Constraints for Multiobjective Structural Optimization
,”
IEEE Congress on Evolutionary Computation
, Singapore, Sept. 25–28, pp.
3922
3929
.
39.
Wang
,
N. F.
, and
Tai
,
K.
, 2007. “
A Hybrid Genetic Algorithm for Multiobjective Structural Optimization
,”
IEEE Congress on Evolutionary Computation
, Singapore, Sept. 25–28, pp.
2948
2955
.
40.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
You do not currently have access to this content.