Statistical sensitivity analysis (SSA) is an effective methodology to examine the impact of variations in model inputs on the variations in model outputs at either a prior or posterior design stage. A hierarchical statistical sensitivity analysis (HSSA) method has been proposed in literature to incorporate SSA in designing complex engineering systems with a hierarchical structure. However, the original HSSA method only deals with hierarchical systems with independent subsystems. For engineering systems with dependent subsystem responses and shared variables, an extended HSSA method with shared variables (named HSSA-SV) is developed in this work. A top-down strategy, the same as in the original HSSA method, is employed to direct SSA from the top level to lower levels. To overcome the limitation of the original HSSA method, the concept of a subset SSA is utilized to group a set of dependent responses from the lower level submodels in the upper level SSA and the covariance of dependent responses is decomposed into the contributions from individual shared variables. An extended aggregation formulation is developed to integrate local submodel SSA results to estimate the global impact of lower level inputs on the top level response. The effectiveness of the proposed HSSA-SV method is illustrated via a mathematical example and a multiscale design problem.

1.
Kim
,
H. M.
,
Rideout
,
D. G.
,
Papalambros
,
P. Y.
, and
Stein
,
J. L.
, 2003, “
Analytical Target Cascading in Automotive Vehicle Design
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
481
489
.
2.
Liu
,
H.
,
Chen
,
W.
,
Kakkolaras
,
M.
,
Papalambros
,
P. Y.
, and
Kim
,
H. M.
, 2006, “
Probabilistic Analytical Target Cascading: A Moment Matching Formulation for Multilevel Optimization Under Uncertainty
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
991
1000
.
3.
Kim
,
H. M.
,
Kumar
,
D. K. D.
,
Chen
,
W.
, and
Papalambros
,
P. Y.
, 2006, “
Target Exploration for Disconnected Feasible Regions in Enterprise-Driven Multilevel Product Design
,”
AIAA J.
0001-1452,
44
(
1
), pp.
67
77
.
4.
Kokkolaras
,
M.
,
Mourelatos
,
Z. P.
, and
Papalambros
,
P. Y.
, 2006, “
Design Optimization of Hierarchically Decomposed Multilevel System Under Uncertainty
,”
ASME J. Mech. Des.
0161-8458,
128
(
2
), pp.
503
508
.
5.
Krishnamachari
,
R. S.
, and
Papalambros
,
P. Y.
, 1997, “
Hierarchical Decomposition Synthesis in Optimal Systems Design
,”
ASME J. Mech. Des.
0161-8458,
119
(
4
), pp.
448
457
.
6.
Chen
,
D. Z.
, and
Liu
,
C. P.
, 1999, “
A Hierarchical Decomposition Scheme for the Topological Synthesis of Articulated Gear Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
121
(
2
), pp.
256
263
.
7.
Yin
,
X.
,
Chen
,
W.
,
To
,
A.
,
McVeigh
,
C.
, and
Liu
,
W. K.
, 2008, “
Statistical Volume Element Method for Predicting Microstructure-Constitutive Property Relations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
197
(
43–44
), pp.
3516
3529
.
8.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
, 2003, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
474
480
.
9.
Han
,
J.
, and
Papalambros
,
P. Y.
, 2010, “
A Sequential Linear Programming Coordination Algorithm for Analytical Target Cascading
,”
ASME J. Mech. Des.
0161-8458,
132
(
2
), p.
021003
.
10.
Li
,
Y.
,
Lu
,
Z.
, and
Michalek
,
J. J.
, 2008, “
Diagonal Quadratic Approximation for Parallelization of Analytical Target Cascading
,”
ASME J. Mech. Des.
0161-8458,
130
(
5
), p.
051402
.
11.
Yin
,
X.
, and
Chen
,
W.
, 2008, “
A Hierarchical Statistical Sensitivity Analysis Method for Complex Engineering Systems Design
,”
ASME J. Mech. Des.
0161-8458,
130
(
7
), p.
071402
.
12.
Saltelli
,
A.
,
Chan
,
K.
, and
Scott
,
E. M.
, 2000,
Sensitivity Analysis
,
Wiley
,
New York
.
13.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
, 2005, “
Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
0161-8458,
127
(
5
), pp.
875
886
.
14.
Liu
,
H.
,
Chen
,
W.
, and
Sudjianto
,
A.
, 2006, “
Relative Entropy Based Method for Probabilistic Sensitivity Analysis in Engineering Design
,”
ASME J. Mech. Des.
0161-8458,
128
(
2
), pp.
326
336
.
15.
Liu
,
H.
,
Chen
,
W.
, and
Sudjianto
,
A.
, 2004, “
Probabilistic Sensitivity Analysis Methods for Design Under Uncertainty
,”
Proceedings of Tenth AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Albany, NY, Aug. 30–Sep. 1.
16.
Xu
,
C.
, and
Gertner
,
G. Z.
, 2008, “
Uncertainty and Sensitivity Analysis for Models with Correlated Parameters
,”
Reliab. Eng. Syst. Saf.
0951-8320,
93
(
10
), pp.
1563
1573
.
17.
Xu
,
C.
, and
Gertner
,
G. Z.
, 2007, “
Extending a Global Sensitivity Analysis Technique to Models With Correlated Parameters
,”
Comput. Stat. Data Anal.
0167-9473,
51
(
12
), pp.
5579
5590
.
18.
Xu
,
C.
, and
Gertner
,
G. Z.
, 2008, “
A General First-Order Global Sensitivity Analysis Method
,”
Reliab. Eng. Syst. Saf.
0951-8320,
93
(
7
), pp.
1060
1071
.
19.
Sobol
,
I. M.
, 1993, “
Sensitivity Analysis for Nonlinear Mathematical Models
,”
Mathematical Modeling & Computational Experiment
,
1
(
4
), pp.
407
414
.
20.
Saltelli
,
A.
,
Tarantola
,
S.
, and
Chan
,
K. P. S.
, 1999, “
A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output
,”
Technometrics
0040-1706,
41
(
1
), pp.
39
56
.
21.
Sobol
,
I. M.
, 2001, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
0378-4754,
55
(
1–3
), pp.
271
280
.
22.
Homma
,
T.
, and
Saltelli
,
A.
, 1996, “
Importance Measures in Global Sensitivity Analysis of Nonlinear Models
,”
Reliab. Eng. Syst. Saf.
0951-8320,
52
(
1
), pp.
1
17
.
23.
McKay
,
M. D.
, 1997, “
Nonparametric Variance-based Methods of Assessing Uncertainty Importance
,”
Reliab. Eng. Syst. Saf.
0951-8320,
57
(
3
), pp.
267
279
.
24.
Haaker
,
M. P. R.
, and
Verheijen
,
P. J. T.
, 2004, “
Local and Global Sensitivity Analysis for a Reactor Design With Parameter Uncertainty
,”
Chem. Eng. Res. Des.
0263-8762,
82
(
5
), pp.
591
598
.
25.
Saltelli
,
A.
, and
Tarantola
,
S.
, 2002, “
On the Relative Importance of Input Factors in Mathematical Models: Safety Assessment for Nuclear Waste Disposal
,”
J. Am. Stat. Assoc.
0162-1459,
97
(
459
), pp.
702
709
.
26.
Iman
,
R. L.
,
Johnson
,
M. E.
, and
Schroeder
,
T. A.
, 2002, “
Assessing Hurricane Effects. Part 1. Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
0951-8320,
78
(
2
), pp.
131
145
.
27.
Iman
,
R. L.
,
Johnson
,
M. E.
, and
Schroeder
,
T. A.
, 2002, “
Assessing Hurricane Effects. Part 2. Uncertainty Analysis
,”
Reliab. Eng. Syst. Saf.
0951-8320,
78
(
2
), pp.
147
155
.
28.
Jacques
,
J.
,
Lavergne
,
C.
, and
Devictor
,
N.
, 2006, “
Sensitivity Analysis in Present of Model Uncertainty and Correlated Inputs
,”
Reliab. Eng. Syst. Saf.
0951-8320,
91
(
10–11
), pp.
1126
1134
.
29.
Tamhane
,
A. C.
, and
Dunlop
,
D. D.
, 2000,
Statistic and Data Analysis From Elementary to Intermediate
,
Prentice-Hall
,
Upper Saddle River, NJ
.
30.
Engquist
,
B. E. W.
,
Li
,
X.
,
Ren
,
W.
, and
Vanden-Eijnden
,
E.
, 2007, “
Heterogeneous Multiscale Methods: A Review
,”
Comm. Comp. Phys.
1815-2406,
2
(
3
), pp.
367
450
.
31.
Hao
,
S.
,
Liu
,
W. K.
,
Moran
,
B.
,
Vernerey
,
F.
, and
Olson
,
G. B.
, 2004, “
Multi-Scale Constitutive Model and Computational Framework for the Design of Ultra-High Strength, High Toughness Steels
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
(
17–20
), pp.
1865
1908
.
32.
Yin
,
X.
,
Lee
,
S.
,
Chen
,
W.
,
Liu
,
W. K.
, and
Horstemeyer
,
M. F.
, 2009, “
Efficient Random Field Uncertainty Propagation in Design Using Multiscale Analysis
,”
ASME J. Mech. Des.
0161-8458,
131
(
2
), p.
021006
.
33.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
, 2001, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip. Optim.
1615-147X,
23
(
1
), pp.
1
13
.
You do not currently have access to this content.