In this study an original analysis of the geometric design of a particular internal rotary machine and an investigation on its theoretical performances are presented. The first part of the work is focused on the geometry of the machine, characterized by more complex rotor profiles compared with the classical epitrochoidal pumps. Suitable parameters are pointed out to completely define the geometry of the machine. In the second part of the study, proper indices are set and evaluated as functions of the design parameters, in order to evaluate the performance of the machine. Finally a specific configuration of the considered pump is compared with the conventional trochoidal pumps in terms of flow-rate indices. The analysis performed allows one to highlight the basic advantages and drawbacks of this original design in comparison with the classical trochoidal profiles and can be used as a basis for CAD/CAE (Computer-Aided Design and Engineering) or experimental studies.

1.
Colbourne
,
J. R.
, 1975, “
Gear Shape and Theoretical Flow-Rate in Internal Gear Pumps
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
3
(
4
), pp.
215
223
.
2.
Beard
,
J. E.
,
Hall
,
A. S.
, and
Soedel
,
W.
, 1991, “
Comparison of Hypotrochoidal and Epitrochoidal Gerotors
,”
ASME J. Mech. Des.
0161-8458,
113
(
2
), pp.
133
141
.
3.
Beard
,
J. E.
,
Yannitell
,
D. W.
, and
Pennock
,
G. R.
, 1992, “
The Effects of the Generating Pin Size and Placement on the Curvature and Displacement of Epitrochoidal Gerotors
,”
Mech. Mach. Theory
0094-114X,
27
(
4
), pp.
373
389
.
4.
Mimmi
,
G.
, and
Pennacchi
,
P.
, 1997, “
Internal Lobe Pump Design
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
21
(
2
), pp.
109
122
.
5.
Litvin
,
F. L.
, and
Pin-Hao
,
F.
, 1996, “
Computerized Design and Generation of Cycloidal Gearings
,”
Mech. Mach. Theory
0094-114X,
31
(
7
), pp.
891
911
.
6.
Litvin
,
F. L.
, and
Fuentes
,
A.
, 2004,
Gear Geometry and Applied Theory
,
Cambridge University Press
,
New York
.
7.
Demenego
,
A.
,
Vecchiato
,
D.
,
Litvin
,
F. L.
,
Nervegna
,
N.
, and
Mancò
,
S.
, 2002, “
Design and Simulation of Meshing of a Cycloidal Pump
,”
Mech. Mach. Theory
0094-114X,
37
(
3
), pp.
311
332
.
8.
Mimmi
,
G. C.
, and
Pennacchi
,
P. E.
, 2000, “
Non-Undercutting Conditions in Internal Gears
,”
Mech. Mach. Theory
0094-114X,
35
, pp.
477
490
.
9.
Bonandrini
,
G.
,
Mimmi
,
G.
, and
Rottenbacher
,
C.
, 2009, “
Theoretical Analysis of Internal Epitrochoidal and Hypotrochoidal Machines
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
223
(
6
), pp.
1469
1480
.
10.
Hsieh
,
C. -F.
, and
Hwang
,
Y. -W.
, 2007,
Geometric Design Using Hypotrochoid and Nonundercutting Conditions for an Internal Cycloidal Gear
,”
ASME J. Mech. Des.
0161-8458,
129
(
4
), pp.
413
420
.
11.
Hsieh
,
C. -F.
, and
Hwang
,
Y. -W.
, 2007, “
Geometric Design for a Gerotor Pump With High Area Efficiency
,”
ASME J. Mech. Des.
0161-8458,
129
(
12
), pp.
1269
1377
.
12.
Yan
,
J
,
Yang
,
D. C. H.
,
Tong
,
S-H
, 2009, “
A New Gerotor Design Method With Switch Angle Assignability
,”
ASME J. Mech. Des.
0161-8458,
131
(
1
), p.
011006
.
13.
1984, “
Hydrostatic Gear Ring Machine
,” US Patent No. 4432712.
14.
Bonandrini
,
G.
,
Mimmi
,
G.
, and
Rottenbacher
,
C.
, 2009, “
Toward Computerized Determination of Envelope to Family of Parametric Planar Curves
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
198
(
27–29
), pp.
2218
2224
.
15.
Paffoni
,
B.
,
Progri
,
R.
, and
Gras
,
R.
, 2004, “
Teeth Clearance Effects Upon Pressure and Film Thickness in a Trochoidal Hydrostatic Gear Pump
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
218
(
4
), pp.
247
256
.
You do not currently have access to this content.