Decomposition-based strategies, such as analytical target cascading (ATC), are often employed in design optimization of complex systems. Achieving convergence and computational efficiency in the coordination strategy that solves the partitioned problem is a key challenge. A new convergent strategy is proposed for ATC that coordinates interactions among subproblems using sequential linearizations. The linearity of subproblems is maintained using infinity norms to measure deviations between targets and responses. A subproblem suspension strategy is used to suspend temporarily inclusion of subproblems that do not need significant redesign, based on trust region and target value step size. An individual subproblem trust region method is introduced for faster convergence. The proposed strategy is intended for use in design optimization problems where sequential linearizations are typically effective, such as problems with extensive monotonicities, a large number of constraints relative to variables, and propagation of probabilities with normal distributions. Experiments with test problems show that, relative to standard ATC coordination, the number of subproblem evaluations is reduced considerably while the solution accuracy depends on the degree of monotonicity and nonlinearity.

1.
Alexandrov
,
N. M.
, and
Lewis
,
R. M.
, 2002, “
Analytical and Computational Aspects of Collaborative Optimization for Multidisciplinary Design
,”
AIAA J.
0001-1452,
40
(
2
), pp.
301
309
.
2.
Balling
,
R.
, and
Sobieszczanski-Sobieski
,
J.
, 1996, “
Optimization of Coupled Systems: A Critical Overview of Approaches
,”
AIAA J.
0001-1452,
34
(
1
), pp.
6
17
.
3.
Braun
,
R.
,
Kroo
,
I.
, and
Moore
,
A.
, 1996. “
Use of the Collaborative Optimization Architecture for Launch Vehicle Design
,”
Sixth AIAA, NASA, and ISSMO, Symposium on Multidisciplinary Analysis and Optimization
, Bellevue, WA, Sep. 4–6, pp.
306
318
.
4.
Cramer
,
E. J.
,
Dennis
,
J. E.
, Jr.
,
Frank
,
P. D.
,
Lewis
,
R. M.
, and
Shubin
,
G. R.
, 1994, “
Problem Formulation for Multidisciplinary Optimization
,”
SIAM J. Optim.
1052-6234,
4
(
4
), pp.
754
776
.
5.
Kodiyalam
,
S.
, and
Sobieszczanski-Sobieski
,
J.
, 2000, “
Bilevel Integrated System Synthesis With Response Surfaces
,”
AIAA J.
0001-1452,
38
(
8
), pp.
1479
1485
.
6.
Sellar
,
R. S.
,
Batill
,
S. M.
, and
Renaud
,
J. E.
, 1996. “
Response Surface Based, Concurrent Subspace Optimization for Multidisciplinary System Design
,”
34th AIAA Aerospace Sciences Meeting and Exhibit (AIAA-1996-714)
, Reno, NV, Jan. 15–18.
7.
Sobieski
,
I.
, and
Kroo
,
I.
, 2000, “
Collaborative Optimization Using Response Surface Estimation
,”
AIAA J.
0001-1452,
38
(
10
), pp.
1931
1938
.
8.
Tappeta
,
R.
, and
Renaud
,
J.
, 1997, “
Multiobjective Collaborative Optimization
,”
ASME J. Mech. Des.
0161-8458,
119
(
3
), pp.
403
411
.
9.
Kim
,
H. M.
,
Michelena
,
N.
,
Papalambros
,
P.
, and
Jiang
,
T.
, 2003, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
474
480
.
10.
Bertsekas
,
D. P.
, 1999,
Nonlinear Programming
,
2nd ed.
,
Athena Scientific
,
Belmont, MA
.
11.
Michalek
,
J.
, and
Papalambros
,
P.
, 2005, “
An Efficient Weighting Update Method to Achieve Acceptable Consistency Deviation in Analytical Target Cascading
,”
ASME J. Mech. Des.
0161-8458,
127
(
2
), pp.
206
214
.
12.
Tosserams
,
S.
,
Etman
,
L.
,
Papalambros
,
P.
, and
Rooda
,
J.
, 2006, “
An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Direction Method of Multipliers
,”
Struct. Multidiscip. Optim
,
31
(
3
), pp.
176
189
.
13.
Lassiter
,
J. B.
,
Wiecek
,
M. M.
, and
Andrighetti
,
K. R.
, 2005, “
Lagrangian Coordination and Analytical Target Cascading: Solving ATC-Decomposed Problems With Lagrangian Duality
,”
Optim. Eng.
1389-4420,
6
(
3
), pp.
361
381
.
14.
Kim
,
H. M.
,
Chen
,
W.
, and
Wiecek
,
M. M.
, 2006, “
Lagrangian Coordination for Enhancing the Convergence of Analytical Target Cascading
,”
AIAA J.
0001-1452,
44
(
10
), pp.
2197
2207
.
15.
Li
,
Y.
,
Lu
,
Z.
, and
Michalek
,
J. J.
, 2008, “
Diagonal Quadratic Approximation for Parallelization of Analytical Target Cascading
,”
ASME J. Mech. Des.
0161-8458,
130
(
5
), p.
051402
.
16.
Kokkolaras
,
M.
,
Mourelatos
,
Z. P.
, and
Papalambros
,
P. Y.
, 2006, “
Design Optimization of Hierarchically Decomposed Multilevel Systems Under Uncertainty
,”
ASME J. Mech. Des.
0161-8458,
128
(
2
), pp.
503
508
.
17.
Liu
,
H.
,
Chen
,
W.
,
Kokkolaras
,
M.
,
Papalambros
,
P.
, and
Kim
,
H.
, 2006, “
Probabilistic Analytical Target Cascading: A Moment Matching Formulation for Multilevel Optimization Under Uncertainty
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
991
1000
.
18.
Papalambros
,
P.
, and
Wilde
,
D.
, 2000,
Principles of Optimal Design: Modeling and Computation
,
2nd ed.
,
Cambridge University Press
,
Cambridge
.
19.
Loh
,
H. T.
, and
Papalambros
,
P.
, 1991, “
A Sequential Linearization Approach for Solving Mixed-Discrete Nonlinear Design Optimization Problems
,”
ASME J. Mech. Des.
0161-8458,
113
(
3
), pp.
325
334
.
20.
Chan
,
K. -Y.
,
Skerlos
,
S. J.
, and
Papalambros
,
P.
, 2007, “
An Adaptive Sequential Linear Programming Algorithm for Optimal Design Problems With Probabilistic Constraints
,”
ASME J. Mech. Des.
0161-8458,
129
(
2
), pp.
140
149
.
21.
Chan
,
K. -Y.
,
Skerlos
,
S.
, and
Papalambros
,
P. Y.
, 2006, “
Monotonicity and Active Set Strategies in Probabilistic Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
893
900
.
22.
Alyaqout
,
S. F.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
, 2005. “
Quantification and Use of System Coupling in Decomposed Design Optimization Problems
,”
ASME International Mechanical Engineering Congress and Exposition(IMECE2005-81364)
, Orlando, FL, Nov. 5–11.
23.
Michelena
,
N.
,
Park
,
H.
, and
Papalambros
,
P. Y.
, 2003, “
Convergence Properties of Analytical Target Cascading
,”
AIAA J.
0001-1452,
41
(
5
), pp.
897
905
.
24.
Fletcher
,
R.
,
Leyffer
,
S.
, and
Toint
,
P.
, 1998. “
On the Global Convergence of an SLP-Filter Algorithm
,” Numerical Analysis Report No. NA/183, University of Dundee, UK, Vol.
98
, pp.
1
11
.
25.
Fletcher
,
R.
,
Leyffer
,
S.
, and
Toint
,
P. L.
, 2002, “
On the Global Convergence of a Filter-SQP Algorithm
,”
SIAM J. Optim.
1052-6234,
13
(
1
), pp.
44
59
.
26.
Han
,
J.
, and
Papalambros
,
P. Y.
, 2010, “
A Note on the Convergence of Analytical Target Cascading With Infinite Norms
,”
ASME J. Mech. Des.
0161-8458, in press.
27.
Bazaraa
,
M. S.
,
Sherali
,
H. D.
, and
Shetty
,
C. M.
, 2006,
Nonlinear Programming: Theory and Algorithms
,
3rd ed.
,
Wiley
.
28.
Mangasarian
,
O. L.
, 1969,
Nonlinear Programming
,
McGraw-Hill
,
New York
.
29.
English
,
K.
,
Bloebaum
,
C.
, and
Miller
,
E.
, 2001, “
Development of Multiple Cycle Coupling Suspension in the Optimization of Complex Systems
,”
Struct. Multidiscip. Optim.
1615-147X,
22
(
4
), pp.
268
283
.
30.
Kasarekar
,
N. T.
, and
English
,
K. W.
, 2004. “
Development of a Hybrid MDF/IDF Multidisciplinary Optimization Solution Method With Coupling Suspension
,”
10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Albany, NY, Aug. 30–Sep. 1, pp.
1865
1874
.
31.
Hock
,
W.
, and
Schittkowski
,
K.
, 1981,
Test Examples for Nonlinear Programming Codes
,
Springer-Verlag
,
Secaucus, NJ
.
32.
Allison
,
J.
,
Kokkolaras
,
M.
,
Zawislak
,
M.
, and
Papalambros
,
P.
, 2005. “
On the Use of Analytical Target Cascading and Collaborative Optimization for Complex System Design
,”
The Sixth World Congress on Structural and Multidisciplinary Optimization
, Rio de Janeiro, Brazil, May 30–Jun. 3.
You do not currently have access to this content.