This paper deals with the experimental analysis of link tension distribution in a chain type continuously variable transmission. We have developed an ad hoc measuring device constituted by a data-logger that is fixed at the chain and moves with it. The data-logger records the strain data from a strain gauge and stores them in a flash memory card. We have been able to measure the tensile force acting on a single chain link in a wide range of working conditions. Our measurements have shown that an almost perfect linearity (which has a clear theoretical explanation) exists between the clamping force and the link tension distribution. We have also found that the link tension distribution is less sensitive to the torque load, which mainly influences the local slip between the chain and the pulley and hence the time required by the link to cover the entire contact arc. We have also carried out a comparison between theoretical predictions and experimental data. We have found a relatively good agreement that confirms the validity of the theoretical approach.

1.
Brown
,
A. W.
,
van Rooij
,
J.
, and
Frank
,
A. A.
, 2004, “
The Design of an Inline GCI Chain CVT for Large Vehicles
,”
International Continuously Variable and Hybrid Transmission Congress
, UC Davis, Paper No. 54.
2.
Mangialardi
,
L.
, and
Mantriota
,
G.
, 1992, “
The Advantages of Using Continuously Variable Transmission in Wind Power Systems
,”
Renewable Energy
0960-1481,
2
(
3
), pp.
201
209
.
3.
Mangialardi
,
L.
, and
Mantriota
,
G.
, 1994, “
Automatically Regulated C.V.T in Wind Power Systems
,”
Renewable Energy
0960-1481,
4
(
3
), pp.
299
310
.
4.
Mangialardi
,
L.
, and
Mantriota
,
G.
, 1994, “
Continuously Variable Transmission With Torque-Sensing Regulators in Waterpumping Windmills
,”
Renewable Energy
0960-1481,
4
(
7
), pp.
807
823
.
5.
Mangialardi
,
L.
, and
Mantriota
,
G.
, 1996, “
Dynamic Behaviour of Wind Power Systems Equipped With Automatically Regulated Continuously Variable Transmission
,”
Renewable Energy
0960-1481,
7
(
2
), pp.
185
203
.
6.
Idan
,
M.
, and
Lior
,
D.
, 2000, “
Continuous Variable Speed Wind Turbine Transmission Concept and Robust Control
,”
Wind Eng.
0309-524X,
24
(
3
), pp.
151
167
.
7.
Carbone
,
G.
,
De Novellis
,
L.
,
Commissaris
,
G.
, and
Steinbuch
,
M.
, 2010, “
An Enhanced CMM Model for the Prediction of Steady-State Performance in CVT Chain Drives
,”
ASME J. Mech. Des.
0161-8458,
132
(
2
), p.
021005
.
8.
Ide
,
T.
,
Uchiyama
,
H.
, and
Kataoka
,
R.
, 1996, “
Experimental Investigation on Shift Speed Characteristics of a Metal V-Belt CVT
,” JSAE Paper No. 9636330.
9.
Ide
,
T.
,
Udagawa
,
A.
, and
Kataoka
,
R.
, 1995, “
Simulation Approach to the Effect of the Ratio Changing Speed of a Metal V-Belt CVT on the Vehicle Response
,”
Veh. Syst. Dyn.
0042-3114,
24
, pp.
377
388
.
10.
Bonsen
,
B.
,
Klaassen
,
T. W. G. L.
,
Pulles
,
R. J.
,
Simons
,
S. W. H.
,
Steinbuch
,
M.
, and
Veenhuizen
,
P. A.
, 2005, “
Performance Optimisation of the Push-Belt CVT by Variator Slip Control
,”
Int. J. Veh. Des.
0143-3369,
39
(
3
), pp.
232
256
.
11.
van der Meulen
,
S. H.
,
van der Noll
,
E.
,
de Jager
,
A. G.
,
van der Sluis
,
F.
,
Veenhuizen
,
P. A.
, and
Steinbuch
,
M.
, 2007, “
Experimental Investigation of Macro-Slip in a Pushbelt CVT Variator
,”
Proceedings of the 2007 International Congress on Continuously Variable and Hybrid Transmissions
, Yokohama, Japan.
12.
Bonsen
,
B.
,
Klaassen
,
T. W. G. L.
,
van de Meerakker
,
K. G. O.
,
Steinbuch
,
M.
, and
Veenhuizen
,
P. A.
, 2003, “
Analysis of Slip in a Continuously Variable Transmission
,”
Proceedings of the IMECE’03, 2003 ASME International Mechanical Engineering Congress
, Washington, DC, Nov. 15–21, Paper No. IMECE2003-41360, Vol.
72
, No.
2
, pp.
995
1000
.
13.
Rothenbühler
,
Y.
, 2009, “
New Slip Synthesis and Theoretical Approach of CVT Slip Control
,” Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
14.
Simons
,
S. W. H.
,
Klaassen
,
T. W. G. L.
,
Steinbuch
,
M.
,
Veenhuizen
,
P. A.
, and
Carbone
,
G.
, 2008, “
Shift Dynamics Modelling for Optimization Variator Slip Control in a Push-Belt CVT
,”
Int. J. Veh. Des.
0143-3369,
48
(
1/2
), pp.
45
64
.
15.
van der Noll
,
E.
,
van der Sluis
,
F.
,
van Dongen
,
T.
, and
van der Velde
,
A.
, 2008, “
Innovative Self-Optimizing Clamping Force Strategy Boosts Efficiency of the Pushbelt CVT
,”
Seventh International CTI Symposium—Innovative Automotive Transmissions
, Berlin, Germany, Dec. 1–4.
16.
Carbone
,
G.
,
Mangialardi
,
L.
, and
Mantriota
,
G.
, 2005, “
The Influence of Pulley Deformations on the Shifting Mechanisms of MVB-CVT
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
103
113
.
17.
Carbone
,
G.
,
Mangialardi
,
L.
,
Bonsen
,
B.
,
Tursi
,
C.
, and
Veenhuizen
,
P. A.
, 2007, “
CVT Dynamics: Theory and Experiments
,”
Mech. Mach. Theory
0094-114X,
42
(
4
), pp.
409
428
.
18.
Saito
,
T.
, 2007, “
Simulation of Stress on Elements of CVT Metal Pushing V-Belt Under Transient Operating Conditions
,”
Proceedings of the International Congress on Continuously Variable and Hybrid Transmissions
, Yokohama, Japan, Paper No. 20074544.
19.
Kanehara
,
S.
,
Fujii
,
T.
, and
Kitagawa
,
T.
, 1994, “
A Study of a Metal Pushing V-Belt Type CVT—Part 3: What Forces Act on Metal Blocks?
,” SAE Paper No. 940735.
20.
Micklem
,
J. D.
,
Longmore
,
D. K.
, and
Burrows
,
C. R.
, 1994, “
Modelling of the Steel Pushing V-Belt Continuously Variable Transmission
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
208
(
1
), pp.
13
27
.
21.
Srivastava
,
N.
, and
Haque
,
I.
, 2008, “
Clearance and Friction Induced Dynamics of Chain CVT Drives
,”
Multibody Syst. Dyn.
1384-5640,
19
(
3
), pp.
255
280
.
22.
Sorge
,
F.
, 1996, “
Influence of Pulley Bending on Metal V-Belt Mechanics
,”
Proceedings of the International Conference on Continuously Variable Power Transmission
, Yokohama, Japan, Sept. 11–12, Japanese Society of Automotive Engineers Paper No. 102 (9636268), pp.
9
15
.
23.
Sorge
,
F.
, 2008, “
A Theoretical Approach to the Shift Mechanics of Rubber Belt Variators
,”
ASME J. Mech. Des.
0161-8458,
130
(
12
), p.
122602
.
24.
Srnik
,
J.
, and
Pfeiffer
,
F.
, 1999, “
Dynamics of CVT Chain Drives
,”
Int. J. Veh. Des.
0143-3369,
22
, pp.
54
72
.
25.
Carbone
,
G.
,
Mangialardi
,
L.
, and
Mantriota
,
G.
, 2001, “
Theoretical Model of Metal V-Belt Drives During Rapid Ratio Changing
,”
ASME J. Mech. Des.
0161-8458,
123
(
1
), pp.
111
117
.
26.
Carbone
,
G.
,
Mangialardi
,
L.
, and
Mantriota
,
G.
, 2002, “
Influence of Clearance Between Plates in Metal Pushing V-Belt Dynamics
,”
ASME J. Mech. Des.
0161-8458,
124
(
3
), pp.
543
557
.
27.
Fuji
,
T.
,
Kurokawa
,
T.
, and
Kanehara
,
S.
, 1993, “
A Study of a Metal Pushing V-Belt Type CVT—Part 2: Compression Force Between Metal Blocks and Ring Tension
,”
International Congress and Exposition
, Detroit, MI, Mar. 1–5.
28.
Asayama
,
H.
,
Kawai
,
J.
,
Tonohata
,
A.
, and
Adachi
,
M.
, 1995, “
Mechanism of Metal Pushing Belt
,”
JSAE Rev.
0389-4304,
16
, pp.
137
143
.
29.
Yamaguchi
,
H.
,
Tani
,
H.
, and
Hayakawa
,
K.
, 2005, “
Measurement and Estimation Technologies for the Experimental Analysis of Metal V-Belt Type CVTs
,”
R&D Rev. Toyota CRDL
,
40
(
3
), pp.
21
29
.
30.
Kimura
,
M.
, 2005, “
An Ultra-Small Sized Data-Logger System for High-Speed Rotational Measurements
,”
R&D Rev. Toyota CRDL
,
40
(
1
), p.
57
.
31.
van Rooij
,
J.
, and
Frank
,
A. A.
, 2002, “
Development of a 700 Nm Chain CVT
,”
Proceedings of the International Congress on Continuously Variable Transmission
, Munich, Germany, VDI Berichte 1709, pp.
179
194
.
32.
Mascolo
,
G.
, 2008, “
Progetto di un Amplificatore in Transimpedenza per Detector ad Alta Capacità
,” MS thesis, Politecnico di Bari, Bari, Italy.
You do not currently have access to this content.