We present an interactive, computationally assisted, methodology for capturing and incorporating designer preferences into a numerical search for design concepts. An initial pool of manually created designs is parameterized and used in a computational search that recombines features to form new designs in a semi-automated way. Designs are evaluated quantitatively by performance calculations and evaluated qualitatively by human designers. Designer preference is captured when visual representations of designs are presented to the designer for subjective evaluation. The methodology searches for optimally performing designs, guided by quantitative performance models and designer preferences. The methodology couples the speed of computational searches with the ability of human designers to subjectively evaluate unmodeled objectives. The new methodology is demonstrated with a vehicle architecture example, which generates a set of designs that progressively improves in performance and more fully meets designer preference. The proposed method brings the ability to generate numerous, optimally performing solutions across a wide solution space, in an efficient and human-centered way, and does so in the early stages of design.

1.
Pahl
,
G.
, and
Beitz
,
W.
, 1996,
Engineering Design: A Systematic Approach
,
Springer
,
New York
.
2.
Ullman
,
D.
, 2002,
The Mechanical Design Process
,
McGraw-Hill
,
New York
.
3.
Ulrich
,
K.
, and
Eppinger
,
S.
, 1995,
Product Design and Development
,
McGraw-Hill
,
New York
.
4.
Pugh
,
S.
, 1990,
Total Design
,
Addison-Wesley
,
London
.
5.
Otto
,
K.
, 1995, “
Measurement Methods for Product Evaluation
,”
Res. Eng. Des.
0934-9839,
7
(
2
), pp.
86
101
.
6.
Barnum
,
G.
, and
Mattson
,
C.
, 2009, “
A Numerical Optimization Search Strategy for Exploring Morphological Charts
,”
50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics
.
7.
Barnum
,
G.
, 2010, “
A Computationally-Assisted Methodology for Rapid Exploration of Design Possibilities in Conceptual Design
,” MS thesis, Brigham Young University.
8.
Huang
,
G. Q.
, and
Mak
,
K. L.
, 1999, “
Web-Based Morphological Charts for Concept Design in Collaborative Product Development
,”
J. Intell. Manuf.
0956-5515,
10
(
3–4
), pp.
267
278
.
9.
Stone
,
R.
,
Wood
,
K.
, and
Crawford
,
R.
, 1999, “
Product Architecture Development With Quantitative Functional Models
,”
Proceedings of the Design Engineering Technical Conferences
.
10.
Bryant
,
C.
,
Stone
,
R.
,
McAdams
,
D.
,
Kurtoglu
,
T.
, and
Campbell
,
M.
, 2005, “
SA Computational Technique for Concept Generation
,”
Proceedings of the DETC2005
, Paper No. DETC05/DTM-85323.
11.
Kopena
,
J.
, and
Regli
,
W.
, 2003, “
Functional Modeling of Engineering Designs for the Semantic Web
,”
Bulletin of the Technical Committee on Data Engineering
,
26
(
4
), pp.
55
62
.
12.
Bryant
,
C.
,
Stone
,
R.
,
McAdams
,
D.
,
Kurtoglu
,
T.
, and
Campbell
,
M.
, 2006, “
A Validation Study of an Automated Concept Generator Design Tool
,”
Proceedings of the DETC/DTM2006
, Paper No. DETC2006-99489.
13.
Bryant
,
C.
,
Bohm
,
M.
,
Stone
,
R.
, and
McAdams
,
D.
, 2007, “
An Interactive Morphological Matrix Computational Design Tool: A Hybrid of Two Methods
,”
Proceedings of the DETC/DTM2007
, Paper No. DETC2007-35583.
14.
Hutcheson
,
R.
,
Jordan
,
R.
, Jr.
,
Stone
,
R.
,
Terpenny
,
J.
, and
Chang
,
X.
, 2006, “
Application of a Genetic Algorithm to Concept Variant Selection
,”
Proceedings of the DETC ‘06 (Design Engineering Technical Conferences)
, pp.
2006
99390
.
15.
Landon
,
M. D.
, and
Balling
,
R. J.
, 1994, “
Optimal Packaging of Complex Parametric Solids According to Mass Property Criteria
,”
ASME J. Mech. Des.
0161-8458,
116
, pp.
375
381
.
16.
Yin
,
S.
, and
Cagan
,
J.
, 2000, “
An Extended Pattern Search Algorithm for Three-Dimensional Component Layout
,”
ASME J. Mech. Des.
0161-8458,
122
, pp.
102
108
.
17.
Michalek
,
J.
, and
Papalambros
,
P.
, 2002, “
Interactive Design Optimization of Architectural Layouts
,”
Eng. Optimiz.
0305-215X,
34
(
5
), pp.
485
501
.
18.
Michalek
,
J.
,
Choudhary
,
R.
, and
Papalambros
,
P.
, 2002, “
Architectural Layout Design Optimization
,”
Eng. Optimiz.
0305-215X,
34
(
5
), pp.
461
484
.
19.
Mitchell
,
T.
, 1997,
Machine Learning
,
WCB/McGraw-Hill
,
New York
, p.
368
.
20.
Norton
,
D.
, 2009, “
Learning About Creativity From an Artificial Artist
,”
Proceedings of the Seventh ACM Conference on Creativity and Cognition
, ACM, New York, NY, pp.
339
340
.
21.
Dickerson
,
K. B.
, and
Ventura
,
D.
, 2009, “
Music Recommendation and Query-by-Content Using Self-Organizing Maps
,”
IEEE-INNS-ENNS International Joint Conference on Neural Networks
, pp.
705
710
.
22.
Parmee
,
I.
, 2001,
Evolutionary and Adaptive Computing in Engineering Design
,
Springer-Verlag
,
London
.
23.
Deb
,
K.
, 2001,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
New York
.
24.
Balling
,
R.
, 2003, “
The Maximin Fitness Function; Multiobjective City and Regional Planning
,”
Proceedings of the EMO
, Vol.
3
, pp.
1
15
.
25.
Mattson
,
C.
,
Mullur
,
A.
, and
Messac
,
A.
, 2004, “
Smart Pareto Filter: Obtaining a Minimal Representation of Multiobjective Design Space
,”
Eng. Optimiz.
0305-215X,
36
(
6
), pp.
721
740
.
26.
Mattson
,
C. A.
, and
Messac
,
A.
, 2003, “
Concept Selection Using s-Pareto Frontiers
,”
AIAA J.
0001-1452,
41
(
6
), pp.
1190
1198
.
27.
Silverman
,
B.
, 1998,
Density Estimation for Statistics and Data Analysis
,
Chapman and Hall/CRC
,
London
.
28.
Bowman
,
A.
, and
Azzalini
,
A.
, 1997,
Applied Smoothing Techniques for Data Analysis: The Kernel Approach With S-Plus Illustrations
,
Oxford University Press
,
Clarendon
.
29.
Wand
,
M.
, and
Jones
,
M.
, 1995,
Kernel Smoothing
,
Chapman and Hall/CRC
,
New York
.
30.
Takagi
,
H.
, 2001, “
Interactive Evolutionary Computation: Fusion of the Capabilities of EC Optimization and Human Evaluation
,”
Proc. IEEE
0018-9219,
89
(
9
), pp.
1275
1296
.
You do not currently have access to this content.