This paper presents a metamorphic kinematic pair extracted from origami folds in the context of mechanisms, its evolved metamorphic chain, and the novel metamorphic parallel mechanism. This paper starts from the generic issues of topological representation for metamorphic mechanism, leading to unified elementary matrix operation for presentation of topological variation. Phase matrix and augmented adjacency matrix are developed to present the topological state and geometry of metamorphic mechanism in an evolutionary process. The metamorphic kinematic pair has the ability of changing mobility to generate different motion patterns based on mobility change correlated with the link annex induced topological phase change. This paper then investigates topological variation of the metamorphic chain and the topological subphases are enumerated in accordance with structure evolution. Using the metamorphic chain as chain-legs, a multiloop metamorphic mechanism with ability of performing phase change and orientation switch is constructed. The disposition of constraints and geometric constraints induced bifurcated motion are analyzed based on screw theory. The topological variation of the metamorphic parallel mechanism is addressed and the foldability is verified by physical device.

1.
Dai
,
J. S.
, 1996, “
Conceptual Study of the Dexterous Reconfigurable Assembly and Packaging System
,” Unilever Research, Science and Technology Report No. PS 960326.
2.
Dai
,
J. S.
,
Zoppi
,
M.
, and
Kong
,
X.
, 2009, “
Preface of Reconfigurable Mechanisms and Robots
,”
Reconfigurable Mechanisms and Robots
,
J. S.
Dai
,
M.
Zoppi
, and
X.
Kong
, ed.,
KC Edizioni
,
Genova
.
3.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 1999, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
0161-8458,
121
(
3
), pp.
375
382
.
4.
Parise
,
J. J.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
, 2000, “
Ortho-Planar Mechanisms
,”
Proceedings of the 26th Biennial Mechanisms and Robotics Conference
, Baltimore, MD, Paper No. DETC2000/MECH-14193.
5.
Liu
,
C. H.
, and
Yang
,
T. L.
, 2004, “
Essence and Characteristics of Metamorphic Mechanisms and Their Metamorphic Ways
,”
Proceedings of the 11th World Congress in Mechanism and Machine Science
, Tianjin, China, pp.
1285
1288
.
6.
Guo
,
Z. H.
, 2007, “
Planar Metamorphic Mechanism and Its Structural Analysis
,”
Journal of Shandong University of Technology: Science and Tecnology
,
21
(
1
), pp.
1
4
.
7.
Carroll
,
D. W.
,
Magleby
,
S. P.
,
Howell
,
L. L.
,
Todd
,
R. H.
, and
Lusk
,
C. P.
, 2005, “
Simplified Manufacturing Through a Metamorphic Process for Compliant Ortho-Planar Mechanisms
,”
Proceedings of the IMECE2005
, Orlando, FL, Paper No. IMECE2005-82093.
8.
Yan
,
H. -S.
, and
Kuo
,
C. -H.
, 2006, “
Topological Representations and Characteristics of Variable Kinematic Joints
,”
ASME J. Mech. Des.
0161-8458,
128
(
2
), pp.
384
391
.
9.
Zhang
,
L. P.
, and
Dai
,
J. S.
, 2009, “
Reconfiguration of Spatial Metamorphic Mechanisms
,”
ASME J. Mech. Rob.
1942-4302,
1
(
1
), p.
011012
.
10.
Zhang
,
L. P.
,
Wang
,
D. L.
, and
Dai
,
J. S.
, 2008, “
Biological Modeling and Evolution Based Synthesis of Metamorphic Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
130
(
7
), p.
072303
.
11.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 1999, “
Configuration Transformations in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
Proceedings of the Tenth World Congress on the Theory of Machines and Mechanisms
, Vol.
2
, Oulu, Finland, pp.
542
547
.
12.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2005, “
Matrix Representation of Topological Changes in Metamorphic Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
127
(
7
), pp.
837
840
.
13.
Lan
,
Z. H.
, and
Du
,
R.
, 2008, “
Representation of Topological Changes in Metamorphic Mechanisms With Matrices of the Same Dimension
,”
ASME J. Mech. Des.
0161-8458,
130
(
7
), p.
074501
.
14.
Dai
,
J. S.
, and
Kerr
,
D. R.
, 2000, “
Six-Component Contact Force Measurement Device Based on the Stewart Platform
,”
J. Mech. Eng. Sci.
0022-2542,
214
(
5
), pp.
687
697
.
15.
Dai
,
J. S.
,
Zhao
,
T.
, and
Nester
,
C.
, 2004, “
Sprained Ankle Physiotherapy Based Mechanism Synthesis and Stiffness Analysis of Rehabilitation Robotic Devices
,”
Auton. Rob.
0929-5593,
16
(
2
), pp.
207
218
.
16.
Nakano
,
T.
,
Sugita
,
N.
,
Ueta
,
T.
,
Tamaki
,
Y.
, and
Mitsuishi
,
M.
, 2009, “
A Parallel Robot to Assist Vitreoretinal Surgery
,”
Int. J. CARS
,
4
(
6
), pp.
517
526
.
17.
Harada
,
K.
,
Oetomo
,
D.
,
Susilo
,
E.
,
Menciassi
,
A.
,
Daney
,
D.
,
Merlet
,
J. -P.
, and
Dario
,
P.
, 2010, “
A Reconfigurable Modular Robotic Endoluminal Surgical System: Vision and Preliminary Results
,”
Robotica
0263-5747,
28
(
2
), pp.
171
183
.
18.
Iordachita
,
I.
,
Kapoor
,
A.
,
Mitchell
,
B.
,
Kazanzides
,
P.
,
Hager
,
G.
,
Handa
,
J.
, and
Taylor
,
R.
, 2006, “
Steady-Hand Manipulator for Retinal Surgery
,”
MICCAI, Medical Robotics Workshop
, pp.
66
73
.
19.
Liu
,
H.
, and
Dai
,
J. S.
, 2002, “
Carton Manipulation Analysis Using Configuration Transformation
,”
J. Mech. Eng. Sci.
0022-2542,
216
(
5
), pp.
543
555
.
20.
Dubey
,
V. N.
, and
Dai
,
J. S.
, 2006, “
A Packaging Robot for Complex Cartons
,”
Ind. Robot
0143-991X,
33
(
2
), pp.
82
87
.
21.
Liu
,
H.
,
Dai
,
J. S.
, and
Senviratne
,
L. D.
, 2008, “
A Model-Based Approach to Cooperative Operation of Multirobot Systems
,”
Ind. Robot
0143-991X,
35
(
1
), pp.
37
45
.
22.
Wright
,
E. M.
, 1981, “
Burnside’s Lemma: A Historical Note
,”
J. Comb. Theory, Ser. B
0095-8956,
30
(
1
), pp.
89
90
.
23.
Freudenstein
,
F.
, 1967, “
The Basic Concepts of Polya’s Theory of Enumeration, With Application to the Structural Classification of Mechanisms
,”
J. Mech.
0022-2569,
2
(
3
), pp.
275
290
.
24.
Hunt
,
K. H.
, 1990,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
25.
McCarthy
,
J. M.
, 2000,
Geometric Design of Linkages
,
Springer-Verlag
,
New York
.
26.
Gogu
,
G.
, 2009, “
Branching Singularities in Kinematotropic Parallel Mechanisms
,”
Proceedings of the Fifth International Workshop on Computational Kinematics
, Duisburg, Germany, pp.
341
348
.
27.
Ball
,
R. S.
, 1900,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge, UK
.
28.
Davidson
,
J.
, and
Hunt
,
K. H.
, 2004,
Robotics and Screw Theory: Applications of Kinematics and Statics to Robotics
,
Oxford University Press
,
New York
.
29.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2002, “
Null-Space Construction Using Cofactors From a Screw-Algebra Context
,”
Proc. R. Soc. London, Ser. A
0950-1207,
458
(
2024
), pp.
1845
1866
.
30.
Zhang
,
K.
,
Fang
,
Y.
,
Fang
,
H.
, and
Dai
,
J. S.
, 2010, “
Geometry and Constraint Analysis of the Three-Spherical Kinematic Chain Based Parallel Mechanism
,”
ASME J. Mech. Rob.
1942-4302,
2
(
3
), p.
031014
.
31.
West
,
D. B.
, 2001,
Introduction to Graph Theory
,
2nd ed.
,
Prentice-Hall
,
Upper Saddle River, NJ
.
32.
Cundy
,
H. M.
, and
Rollett
,
A. P.
, 1981,
Mathematical Models
,
Tarquin
,
Suffolk
.
33.
McCarthy
,
J. M.
, 1990,
Introduction to Theoretical Kinematics
,
MIT
,
Cambridge, MA
.
34.
Tsai
,
L. W.
, 1999,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley
,
New York
.
35.
Ding
,
H.
,
Zhao
,
J.
, and
Huang
,
Z.
, 2009, “
Unified Topological Representation Models of Planar Kinematic Chains
,”
ASME J. Mech. Des.
0161-8458,
131
(
11
), p.
114503
.
36.
Zhao
,
T. S.
,
Dai
,
J. S.
, and
Huang
,
Z.
, 2002, “
Geometric Analysis of Overconstrained Parallel Manipulators With Three and Four Degrees of Freedom
,”
JSME Int. J., Ser. C
1340-8062,
45
(
3
), pp.
730
740
.
37.
Dai
,
J. S.
,
Li
,
D.
,
Zhang
,
Q.
, and
Jin
,
G.
, 2004, “
Mobility Analysis of a Complex Structured Ball Based on Mechanism Decomposition and Equivalent Screw System Analysis
,”
Mech. Mach. Theory
0094-114X,
39
(
4
), pp.
445
458
.
38.
Zhao
,
J. S.
,
Zhou
,
K.
, and
Feng
,
Z. J.
, 2004, “
A Theory of Degrees of Freedom for Mechanisms
,”
Mech. Mach. Theory
0094-114X,
39
(
6
), pp.
621
643
.
39.
Merlet
,
J. P.
, 1989, “
Singularity Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Robot. Res.
0278-3649,
8
(
9
), pp.
45
56
.
40.
Cheng
,
H.
,
Liu
,
G. F.
,
Yiu
,
Y. K.
,
Xiong
,
Z. H.
, and
Li
,
Z. X.
, 2001, “
Advantages and Dynamics of Parallel Manipulators With Redundant Actuation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Maui, HI, pp.
171
176
.
You do not currently have access to this content.