The problem of quantifying uncertainty in the design process is approached indirectly. Nonquantifiable variability resulting from lack of knowledge is treated as epistemic uncertainty and quantifiable variability caused by random influences is treated as aleatory uncertainty. The emphasis in this approach is on the effects of epistemic uncertainty, left unquantified, on design performance. Performance is treated as a random function of the epistemic uncertainties that are considered as independent variables, and a design decision is based on the mean and variance of design performance. Since the mean and variance are functions of the uncertainties, multicriteria decision methods are employed to determine the preferred design. The methodology is illustrated on a three-spring model with stochastic forcing and two uncertain damping coefficients. Based on the example, the concept of balancing expected performance and risk is explored in an engineering context. Risk is quantified using aleatory uncertainty for fixed values of epistemic uncertainty. The study shows the unique features of this approach in which risk-based design decisions are made under both aleatory and epistemic uncertainties without assuming a distribution for epistemic uncertainty.

1.
Helton
,
J. C.
, and
Oberkampf
,
W. L.
, 2004, “
Special Issue: Alternative Representations of Epistemic Uncertainty
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
, pp.
1
10
.
2.
Chen
,
W.
,
Garimella
,
R.
, and
Michelena
,
N.
, 2001, “
Robust Design for Improved Vehicle Handling Under a Range of Maneuver Conditions
,”
Eng. Optimiz.
0305-215X,
33
(
3
), pp.
303
326
.
3.
Dai
,
Z.
,
Scott
,
M. J.
, and
Mourelatos
,
Z. P.
, 2004, “
Improving Robust Design With Preference Aggregation Methods
,”
Proceedings of the Society of Automotive Engineers World Congress
, Paper No. 2004-01-1140.
4.
Du
,
X.
, and
Chen
,
W.
, 2000, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
0161-8458,
122
(
4
), pp.
385
394
.
5.
Youn
,
B. D.
,
Cho
,
K. K.
, and
Park
,
Y. H.
, 2003, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
125
(
2
), pp.
221
232
.
6.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
0161-8458,
126
(
2
), pp.
225
233
.
7.
Youn
,
B. B.
,
Choi
,
K. K.
,
Yang
,
R. -J.
, and
Gu
,
L.
, 2004, “
Reliability-Based Design Optimization for Crashworthiness of Vehicle Side Impact
,”
Struct. Multidiscip. Optim.
1615-147X,
26
(
3–4
), pp.
272
283
.
8.
Sinha
,
K.
, 2007, “
Reliability-Based Multiobjective Optimization for Automotive Crashworthiness and Occupant Safety
,”
Struct. Multidiscip. Optim.
1615-147X,
33
, pp.
255
268
.
9.
Kim
,
C.
, and
Choi
,
K. K.
, 2008, “
Reliability-Based Design Optimization Using Response Surface Method With Prediction Interval Estimation
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
121401
.
10.
Du
,
X.
,
Sudjianto
,
A.
, and
Huang
,
B.
, 2005, “
Reliability-Based Design With the Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
1068
1076
.
11.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
, 2008, “
A Sequential Algorithm for Possibility-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
011001
.
12.
Huang
,
H. Z.
, and
Zhang
,
X.
, 2009, “
Design Optimization With Discrete and Continuous Variables of Aleatory and Epistemic Uncertainty
,”
ASME J. Mech. Des.
0161-8458,
131
, p.
031006
.
13.
Du
,
X.
, 2008, “
Unified Uncertainty Analysis by the First Order Reliability Method
,”
ASME J. Mech. Des.
0161-8458,
130
(
9
), p.
091401
.
14.
Pons
,
D. J.
, and
Raine
,
J. K.
, 2003, “
Relative Effectiveness of Mechanisms for Simulating Uncertainty in Quantitative Systems
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
217
(
4
), pp.
531
540
.
15.
Farid
,
S. S.
,
Washbrook
,
J.
, and
Titchener-Hooker
,
N. J.
, 2005, “
Decision-Support Tool for Assessing Biomanufacturing Strategies Under Uncertainty: Stainless Steel Versus Disposable Equipment for Clinical Trial Material Preparation
,”
Biotechnol. Prog.
8756-7938,
21
(
2
), pp.
486
497
.
16.
Rusli
,
E.
,
Drews
,
T. O.
,
Ma
,
D. L.
,
Alkire
,
R. C.
, and
Braatz
,
R. D.
, 2006, “
Robust Nonlinear Feedback-Feedforward Control of a Coupled Kinetic Monte Carlo-Finite Difference Simulation
,”
J. Process Control
0959-1524,
16
(
4
), pp.
409
417
.
17.
Apley
,
D.
,
Liu
,
J.
, and
Chen
,
W.
, 2006, “
Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
945
958
.
18.
Martin
,
J.
, and
Simpson
,
T.
, 2006, “
A Methodology to Manage System-Level Uncertainty During Conceptual Design
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
959
968
.
19.
Fu
,
Y.
, 2006, “
A New Study on Optimisation Under Uncertainty for Vehicle Design
,”
Int. J. Mater. Prod. Technol.
0268-1900,
25
(
1–3
), pp.
27
41
.
20.
Du
,
X.
, and
Chen
,
W.
, 2002, “
Efficient Uncertainty Analysis Methods for Multidisciplinary Robust Design
,”
AIAA J.
0001-1452,
40
(
3
), pp.
545
552
.
21.
Du
,
X.
, and
Chen
,
W.
, 2005, “
Collaborative Reliability Analysis Under the Framework of Multidisciplinary Systems Design
,”
Optim. Eng.
1389-4420,
6
(
1
), pp.
63
84
.
22.
Gu
,
X.
,
Renaud
,
J. E.
, and
Penniger
,
C. L.
, 2006, “
Implicit Uncertainty Propagation for Robust Collaborative Optimization
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
1001
1013
.
23.
Birge
,
J. R.
, and
Louveaux
,
F.
, 1997,
Introduction to Stochastic Programming
,
Springer-Verlag
,
Berlin
.
24.
Liu
,
B.
, 1999,
Uncertain Programming
,
Wiley
,
New York
.
25.
Mulvey
,
J. M.
,
Vanderbei
,
R. J.
, and
Zenios
,
S. A.
, 1995, “
Robust Optimization of Large-Scale Systems
,”
Oper. Res.
0030-364X,
43
(
2
), pp.
264
281
.
26.
Kouvelis
,
P.
, and
Yu
,
G.
, 1996,
Robust Discrete Optimization and Its Applications
,
Kluwer Academic
,
Dordrecht
.
27.
Samson
,
S.
,
Reneke
,
J. A.
, and
Wiecek
,
M. M.
, 2009, “
A Review of Different Perspectives on Uncertainty and Risk and an Alternate Modeling Paradigm
,”
Reliab. Eng. Syst. Saf.
0951-8320,
94
(
2
), pp.
558
567
.
28.
Rockafellar
,
R. T.
, 2007, “
Coherent Approaches to Risk in Optimization Under Uncertainty
,”
Tutorials in Operation Research, INFORMS 2007
.
29.
Knight
,
F. H.
, 1921,
Risk, Uncertainty, and Profit
,
Houghton Mifflin
,
Boston, MA
.
30.
Reneke
,
J. A.
, and
Wiecek
,
M. M.
, 2005, “
Vehicle Design Decomposition Under Uncertainty and Risk
,”
Proceedings of the Sixth World Congresses of Structural and Multidisciplinary Optimization
, Rio de Janeiro, Brazil.
31.
Reneke
,
J. A.
, and
Wiecek
,
M. M.
, 2005, “
Complex Systems Engineering Design Under Uncertainty and Risk
,” Department of Mathematical Sciences, Clemson University, Technical Report No. TR200509RW.
32.
Samson
,
S.
,
Thoomu
,
S.
,
Fadel
,
G.
, and
Reneke
,
J. A.
, 2009, “
Reliable Design Optimization Under Aleatory and Epistemic Uncertainty
,”
Proceedings of the ASME Design Engineering Technical Conference and Design Automation Conference
.
33.
Higham
,
D. J.
, 2001, “
An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations
,”
SIAM Rev.
0036-1445,
43
, pp.
525
546
.
34.
Ehrgott
,
M.
, 2005,
Multicriteria Optimization
,
2nd ed.
,
Springer
,
Berlin, Germany
.
35.
Reneke
,
J. A.
, and
Samson
,
S.
, 2008, “
Models and Risk Analysis of Uncertain Complex Systems
,”
International Journal of Pure and Applied Mathematics
,
44
(
4
), pp.
537
561
.
36.
Reneke
,
J. A.
, and
Wiecek
,
M. M.
, 2002, “
Performance-Based Multicriteria Decision Making for Complex Systems: An Example
,”
Proceedings of the Sixth World Multiconference on Systemics, Cybernetics and Informatics SCI, Information Systems Development III
, Vol.
18
, pp.
292
298
.
37.
Hazelrigg
,
G. A.
, 2003, “
Validation of Engineering Design Alternative Selection Methods
,”
Eng. Optimiz.
0305-215X,
35
(
2
), pp.
103
120
.
38.
Samson
,
S.
, and
Reneke
,
J.
, “A Multicriteria Approach Resolving Ellsberg’s Paradox With Comments on Criteria Aggregation,” International Journal of Pure and Applied Mathematics (to be published).
You do not currently have access to this content.