Sensitivity analyses are frequently used during the design of engineering systems to qualify and quantify the effect of parametric variation in the performance of a system. Two primary types of sensitivity analyses are generally used: local and global. Local analyses, generally involving derivative-based measures, have a significantly lower computational burden than global analyses but only provide measures of sensitivity around a nominal point. Global analyses, generally performed with a Monte Carlo sampling approach, and variation-based measures provide a complete description of sensitivity but incur a large computational burden and require information regarding the distributions of the design parameters in a concept. Local analyses are generally suited to the early stages of design when parametric information is limited, and a large number of concepts must be evaluated (necessitating a light computational burden). Global analyses are more suited to the later stages of design when more information about parametric distributions is available and fewer concepts are under consideration. Current derivative-based local approaches provide a different and incompatible set of measures than a global variation-based analysis. This makes a direct comparison of local to global measures ill posed. To reconcile local and global sensitivity analyses, a hybrid local variation-based sensitivity (HyVar) approach is presented. This approach has a similar computational burden to a local approach but produces measures or percentage contributions. The HyVar approach is directly comparable to global variation-based approaches. In this paper, the HyVar sensitivity analysis method is developed in the context of a functional based behavioral modeling framework. An example application of the method is presented along with a summary of results produced from a more comprehensive example.

1.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
, 2004,
Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models
,
Wiley
,
Hoboken, NJ
.
2.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
, 2008,
Global Sensitivity Analysis. The Primer
,
Wiley
,
Hoboken, NJ
.
3.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
, 2005, “
Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
0161-8458,
127
(
5
), pp.
875
886
.
4.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K. H.
, 2007,
Engineering Design: A Systematic Approach
,
Springer-Verlag
,
Berlin
.
5.
Otto
,
K.
, and
Wood
,
K.
, 2001,
Product Design: Techniques in Reverse Engineering, Systematic Design, and New Product Development
,
Prentice-Hall
,
New York
.
6.
Suh
,
N.
, 2001,
Axiomatic Design: Advances and Applications
,
Oxford University Press
,
New York
.
7.
Ullman
,
D. G.
, 2002,
The Mechanical Design Process
,
3rd ed.
,
McGraw-Hill
,
New York
.
8.
Sage
,
A.
, and
Armtrong
,
J.
, 2000,
Introduction to Systems Engineering
,
Wiley-Interscience
,
New York
.
9.
Otto
,
K. N.
, and
Wood
,
K. L.
, 2001,
Product Design: Techniques in Reverse Engineering and New Product Development
,
Prentice-Hall
,
Upper Saddle River, NJ
.
10.
Blanchard
,
B. S.
, and
Fabrycky
,
W. J.
, 2006,
Systems Engineering and Analysis
,
Prentice-Hall
,
Upper Saddle River, NJ
.
11.
Miles
,
L.
, 1961,
Techniques of Value Analysis and Engineering
,
McGraw-Hill
,
New York
.
12.
Rodenacker
,
W.
, 1971,
Methodisches Konstruieren
,
Springer
,
Berlin
.
13.
Hirtz
,
J.
,
Stone
,
R.
,
McAdams
,
D.
,
Szykman
,
S.
, and
Wood
,
K.
, 2002, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
0934-9839,
13
(
2
), pp.
65
82
.
14.
Nagel
,
R. L.
,
Hutcheson
,
R. S.
,
Stone
,
R.
,
McAdams
,
D.
, and
Donndelinger
,
J.
, 2008, “
Function Design Framework (FDF): Integrated Process and Function Modeling for Complex System Design
,”
ASME
, Paper No. DETC2008-49369.
15.
Little
,
A.
,
Wood
,
K.
, and
McAdams
,
D.
, 1997, “
Functional Analysis: A Fundamental Empirical Study for Reverse Engineering, Benchmarking and Redesign
,”
Proceedings of the 1997 Design Engineering Technical Conferences
, Paper No. 97-DETC/DTM-3879.
16.
Elmqvist
,
H.
, 1978, “
A Structured Model Language for Large Continuous Systems
,” Ph.D. thesis, Lund Institue of Technology, Lund, Sweden.
17.
Kurtoglu
,
T.
, and
Campbell
,
M.
, 2009, “
Automated Synthesis of Electromechanical Design Configurations From Empirical Analysis of Function to Form Mapping
,”
J. Eng. Design
0954-4828,
20
(
1
), pp.
83
104
.
18.
Nagel
,
R. L.
,
Midha
,
P. A.
,
Tinsley
,
A.
,
McAdams
,
D. A.
,
Stone
,
R. B.
, and
Shu
,
L.
, 2008, “
Exploring the Use of Functional Models in Biomimetic Conceptual Design
,”
ASME J. Mech. Des.
0161-8458,
130
(
12
), p.
121102
.
19.
Stone
,
R.
, and
Wood
,
K.
, 2000, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
0161-8458,
122
(
4
), pp.
359
370
.
20.
Jin
,
Y.
, and
Li
,
W.
, 2007, “
Design Concept Generation: A Hierarchical Coevolutionary Approach
,”
ASME J. Mech. Des.
0161-8458,
129
(
10
), pp.
1012
1022
.
21.
2005,
Special Issue of Artificial Intelligence in Engineering Design and Manufacturing—Engineering Applications of Representations of Function
,
R. B.
Stone
and
A.
Chakrabarti
, eds., Vol.
19
.
22.
Giordano
,
F.
, 1985,
An Introductory Course in Mathematical Modelling
,
Brooks Cole
,
Boston, MA
.
23.
Fawkes
,
N. D.
, and
Mahony
,
J. J.
, 1994,
An Introduction to Mathematical Modeling
,
Wiley
,
New York
.
24.
Cross
,
M.
, and
Moscardini
,
A. O.
, 1985,
Learning the Art of Mathematical Modeling
,
Wiley
,
New York
.
25.
The Mathworks, Inc.
, 2008, The Mathworks SIMULINK—Simulation and Model-Based Design, http://www.mathworks.com/products/simulink/http://www.mathworks.com/products/simulink/
26.
Dynasism AB
, 2008, DYMOLA Multi-Engineering Modeling and Simulation, http://www.dynasim.sehttp://www.dynasim.se
27.
Bracewell
,
R. H.
, and
Sharpe
,
J. E. E.
, 1996, “
Function Descriptions Used in Computer Support for Qualitative Scheme Generation—SCHEMEBUILDER
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
10
, pp.
333
345
.
28.
Paynter
,
H. M.
, 1961,
Analysis and Design of Engineering Systems
,
MIT
,
Cambridge, MA
.
29.
Leamer
,
E.
, 1983, “
Let’s Take the Con Out of Econometrics
,”
Am. Econ. Rev.
0002-8282,
73
(
1
), pp.
31
43
.
30.
Larocque
,
G. R.
,
Bhatti
,
J. S.
,
Liu
,
J.
,
Ascough
,
J. C.
, II
,
Luckai
,
N.
, and
Gordon
,
A. M.
, 2008, “The Importance of Uncertainty and Sensitivity Analyses in Process-Based Models of Carbon and Nitrogen Cycling in Terrestrial Ecosystems With Particular Emphasis on Forest Ecosystems,” Ecological Modeling, 219(3-4), pp. 261–263.
31.
Martin
,
J.
, and
Simpson
,
T.
, 2005, “
A Methodology to Manage Uncertainty During System-Level Conceptual Design
,”
ASME
, Paper No. DETC2005-84984.
32.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
, 2004, “
An Integrated Framework for Optimization Under Uncertainty Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
0161-8458,
126
(
4
), pp.
562
570
.
33.
Prechelt
,
L.
, 2003, “
Are Scripting Languages Any Good? A Validation of PERL, PYTHON, REXX, and TCL against C, C++ and JAVA
,”
Advances in Computers
,
57
, pp.
207
271
.
34.
DedaSys LLC
, 2009, “
Programming Language Popularity
,” http://www.langpop.com/http://www.langpop.com/
35.
Hutcheson
,
R. S.
, 2009, “
Function-Based Design Tools for Analyzing the Behavior and Sensitivity of Complex Systems During Conceptual Design
,” Ph.D. thesis, Texas A&M, College Station, TX.
36.
Bohm
,
M.
,
Stone
,
R.
, and
Szykman
,
S.
, 2005, “
Enhancing Virtual Product Representations for Advanced Design Repository Systems
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
5
(
4
), pp.
360
372
.
You do not currently have access to this content.