In this paper, we report on a multistable linear actuation mechanism articulated with electroactive polymer actuators, widely known as artificial muscles. These actuators, which can operate both in wet and dry media under as small as 1.0 V potential difference, are fundamentally cantilever beams made of two electroactive polymer layers (polypyrrole) and a passive polyvinylidene fluoride substrate in between the electroactive layers. The mechanism considered is kinematically analogous to a four-bar mechanism with revolute-prismatic-revolute-prismatic pairs, converting the bending displacement of a polymer actuator into a rectilinear movement of an output point. The topology of the mechanism resembles that of bistable mechanisms operating under the buckling effect. However, the mechanism proposed in this paper can have many stable positions depending on the input voltage. After demonstrating the feasibility of the actuation concept using kinematic and finite element analyses of the mechanism, experiments were conducted on a real mechanism articulated with a multiple number (2, 4, or 8) of electroactive polymer actuators, which had dimensions of 12×2×0.17mm3. The numerical and experimental results demonstrate that the angular displacement of the artificial muscles is accurately transformed into a rectilinear motion by the proposed mechanism. The higher the input voltage, the larger the rectilinear displacement. This study suggests that this multistable linear actuation mechanism can be used as a programmable switch and/or a pump in microelectromechanical systems (MEMS) by adjusting the input voltage and scaling down the mechanism further.

1.
Alici
,
G.
, and
Huynh
,
N. N.
, 2007, “
Performance Quantification of Conducting Polymer Actuators for Real Applications: A Microgripping System
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
12
(
1
), pp.
73
84
.
2.
Smela
,
E.
,
Kallenbach
,
M.
, and
Holdenried
,
J.
, 1999, “
Electrochemically Driven Polypyrrole Bilayers for Moving and Positioning Bulk Micromachined Silicon Plates
,”
J. Microelectromech. Syst.
1057-7157,
8
(
4
), pp.
373
383
.
3.
Baughman
,
R. H.
, 1996, “
Conducting Polymer Artificial Muscles
,”
Synth. Met.
0379-6779,
78
, pp.
339
353
.
4.
Wallace
,
G. G.
,
Spinks
,
G. M.
,
Kane Maguire
,
L. A. P.
, and
Teasdale
,
P. R.
, 2009,
Conductive Electroactive Polymers, Intelligent Materials Systems
,
3rd ed.
,
CRC
,
Boca Raton, FL
.
5.
Madden
,
J. D.
,
Cush
,
R. A.
,
Kanigan
,
T. S.
, and
Hunter
,
I. W.
, 2000, “
Fast Contracting Polypyrrole Actuators
,”
Synth. Met.
0379-6779,
113
, pp.
185
192
.
6.
Wang
,
D.
,
Pham
,
H.
, and
Hsieh
,
Y.
, 2009, “
Dynamical Switching of an Electromagnetically Driven Compliant Bistable Mechanism
,”
Sens. Actuators, A
0924-4247,
149
, pp.
143
151
.
7.
Cazottes
,
P.
,
Fernandes
,
A.
,
Pouget
,
J.
, and
Hafez
,
M.
, 2009, “
Bistable Buckled Beam: Modeling of Actuating Force and Experimental Validations
,”
ASME J. Mech. Des.
0161-8458,
131
, p.
101001
.
8.
Sönmez
,
U.
, and
Tutum
,
C. C.
, 2008, “
A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
042304
.
9.
Zhang
,
Y.
,
Ding
,
G.
,
Shun
,
X.
,
Li
,
X.
, and
Cai
,
B.
, 2005, “
Design and Analysis of the Micromechanical Structure for an Electromagnetic Bistable RF MEMS Switch
,”
Asia-Pacific Microwave Conference Proceedings
, Dec. 4–7.
10.
Receveur
,
R. A. M.
,
Marxer
,
C. R.
,
Woering
,
R.
,
Larik
,
V. C. M. H.
, and
Rooij
,
N. F.
, 2005, “
Laterally Moving Bistable MEMS DC Switch for Biomedical Applications
,”
J. Microelectromech. Syst.
1057-7157,
14
(
5
), pp.
1089
1098
.
11.
Santer
,
M.
, and
Pellegrino
,
S.
, 2008, “
Compliant Multistable Structural Elements
,”
Int. J. Solids Struct.
0020-7683,
45
, pp.
6190
6204
.
12.
Alici
,
G.
,
Spinks
,
G.
,
Huynh
,
N. N.
,
Sarmadi
,
L.
, and
Minato
,
R.
, 2007, “
Establishment of a Biomimetic Device Based on Tri-Layer Polymer Actuators—Propulsion Fins
,”
J. Bioinspiration & Biomimetics
,
2
, pp.
S18
S30
.
13.
McGovern
,
S.
,
Alici
,
G.
,
Truong
,
V. -T.
, and
Spinks
,
G.
, 2009, “
Finding NEMO (Novel Electromaterial Muscle Oscillator): A Polypyrrole Powered Robotic Fish With Real-Time Wireless Speed and Directional Control
,”
Smart Mater. Struct.
0964-1726,
18
(
9
), p.
095009
.
14.
Alici
,
G.
, and
Higgins
,
M. J.
, 2009, “
Normal Stiffness Calibration of Microfabricated Tri-Layer Conducting Polymer Actuators
,”
Smart Mater. Struct.
0964-1726,
18
, p.
065013
.
15.
Spinks
,
G. M.
,
Xi
,
B.
,
Zhou
,
D.
,
Truong
,
V.
, and
Wallace
,
G. G.
, 2004, “
Enhanced Control and Stability of Polypyrrole Electromechanical Actuators
,”
Synth. Met.
0379-6779,
140
(
2–3
), pp.
273
280
.
16.
Wu
,
Y.
,
Alici
,
G.
,
Spinks
,
G. M.
, and
Wallace
,
G. G.
, 2006, “
Fast Tri-Layer Polypyrrole Bending Actuators for High Speed Applications
,”
Synth. Met.
0379-6779,
156
(
16–17
), pp.
1017
1022
.
17.
Alici
,
G.
,
Devaud
,
V.
,
Renaud
,
P.
, and
Spinks
,
G. M.
, 2009, “
Conducting Polymer Microactuators Operating in Air
,”
J. Micromech. Microeng.
0960-1317,
19
, p.
025017
.
18.
Mutlu
,
R.
, and
Alici
,
G.
, 2010, “
Artificial Muscles with Adjustable Stiffness
,”
Smart Mater. Struct.
0964-1726,
19
(
4
), p.
045004
.
19.
Alici
,
G.
, and
Huynh
,
N. N.
, 2006, “
Predicting Force Output of Trilayer Polymer Actuators
,”
Sens. Actuators, A
0924-4247,
132
(
2
), pp.
616
625
.
20.
Rao
,
J. S.
, and
Dukkipati
,
R. V.
, 1989,
Mechanism and Machine Theory
,
Wiley
,
New York
.
21.
John
,
S. W.
, 2008, “
Modeling and Control of Polymer Actuators
,” Ph.D. thesis, University of Wollongong.
22.
Merah
,
N.
, 2007, “
Natural Weathering Effects on Some Properties of CPVC Pipe Material
,”
J. Mater. Process. Technol.
0924-0136,
191
(
1–3
), pp.
198
201
.
23.
Alici
,
G.
, 2009, “
An Effective Modeling Approach to Estimate Nonlinear Bending Behaviour of Cantilever Type Conducting Polymer Actuators
,”
Sens. Actuators B
0925-4005,
141
(
1
), pp.
284
292
.
You do not currently have access to this content.