The first-order reliability method (FORM) is efficient but may not be accurate for nonlinear limit-state functions. The second-order reliability method (SORM) is more accurate but less efficient. To maintain both high accuracy and efficiency, we propose a new second-order reliability analysis method with first-order efficiency. The method first performs the FORM to identify the most probable point (MPP). Then, the associated limit-state function is decomposed into additive univariate functions at the MPP. Each univariate function is further approximated by a quadratic function. The cumulant generating function of the approximated limit-state function is then available so that saddlepoint approximation can be easily applied in computing the probability of failure. The accuracy of the new method is comparable to that of the SORM, and its efficiency is in the same order of magnitude as the FORM.

1.
Wu
,
Y. T.
,
Millwater
,
H. R.
, and
Cruse
,
T. A.
, 1990, “
Advanced Probabilistic Structural Analysis Method for Implicit Performance Functions
,”
AIAA J.
0001-1452,
28
(
9
), pp.
1663
1669
.
2.
Hasofer
,
A. M.
, and
Lind
,
N. C.
, 1974, “
An Exact and Invariant First-Order Reliability Format
,”
J. Engrg. Mech. Div.
0044-7951,
100
, pp.
111
121
.
3.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
, 1983, “
First-Order Concepts in System Reliability
,”
Struct. Safety
0167-4730,
1
(
3
), pp.
177
188
.
4.
Breitung
,
K.
, 1984, “
Asymptotic Approximations for Multinormal Integrals
,”
J. Eng. Mech.
0733-9399,
110
(
3
), pp.
357
366
.
5.
Li
,
G.
,
Rosenthal
,
C.
, and
Rabitz
,
H.
, 2001, “
High Dimensional Model Representations
,”
J. Phys. Chem. A
1089-5639,
105
(
33
), pp.
7765
7777
.
6.
Demiralp
,
M.
, 2009, “
High Dimensional Model Representation Supported by Products of Univariate Functions
,”
International Conference on Numerical Analysis and Applied Mathematics
, Vol.
1168
, pp.
420
423
.
7.
Rahman
,
S.
, 2009, “
Extended Polynomial Dimensional Decomposition for Arbitrary Probability Distributions
,”
J. Eng. Mech.
0733-9399,
135
(
12
), pp.
1439
1451
.
8.
Rahman
,
S.
, and
Xu
,
H.
, 2004, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
0266-8920,
19
(
4
), pp.
393
408
.
9.
Xu
,
H.
, and
Rahman
,
S.
, 2004, “
A Generalized Dimension-Reduction Method for Multidimensional Integration in Stochastic Mechanics
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
(
12
), pp.
1992
2019
.
10.
Yook
,
S.
,
Min
,
J.
,
Kim
,
D. H.
, and
Choi
,
D. H.
, 2009, “
Reliability Analysis Using Dimension Reduction Method With Variable Sampling Points
,”
Transactions of the Korean Society of Mechanical Engineers, A
,
33
(
9
), pp.
870
877
.
11.
Rahman
,
S.
, and
Wei
,
D.
, 2006, “
A Univariate Approximation at Most Probable Point for Higher-Order Reliability Analysis
,”
Int. J. Solids Struct.
0020-7683,
43
(
9
), pp.
2820
2839
.
12.
Lee
,
I.
,
Choi
,
K. K.
,
Du
,
L.
, and
Gorsich
,
D.
, 2008, “
Inverse Analysis Method Using MPP-Based Dimension Reduction for Reliability-Based Design Optimization of Nonlinear and Multi-Dimensional Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
198
(
1
), pp.
14
27
.
13.
Wei
,
D.
, and
Rahman
,
S.
, 2007, “
Structural Reliability Analysis by Univariate Decomposition and Numerical Integration
,”
Probab. Eng. Mech.
0266-8920,
22
(
1
), pp.
27
38
.
14.
Huang
,
B.
, and
Du
,
X.
, 2006, “
Uncertainty Analysis by Dimension Reduction Integration and Saddlepoint Approximations
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
26
33
.
15.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
0161-8458,
126
(
2
), pp.
225
233
.
16.
Du
,
X.
,
Guo
,
J.
, and
Beeram
,
H.
, 2008, “
Sequential Optimization and Reliability Assessment for Multidisciplinary Systems Design
,”
Struct. Multidiscip. Optim.
1615-147X,
35
(
2
), pp.
117
130
.
17.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
, 1981, “
Non-Normal Dependent Vectors in Structural Safety
,”
J. Engrg. Mech. Div.
0044-7951,
107
(
6
), pp.
1227
1238
.
18.
Lee
,
I.
,
Choi
,
K. K.
, and
Gorsich
,
D.
, 2010, “
System Reliability-Based Design Optimization Using the MPP-Based Dimension Reduction Method
,”
Struct. Multidiscip. Optim.
1615-147X,
41
(
6
), pp.
823
839
.
19.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2004, “
An Investigation of Nonlinearity of Reliability-Based Design Optimization Approaches
,”
ASME J. Mech. Des.
0161-8458,
126
(
3
), pp.
403
411
.
20.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2004, “
Selecting Probabilistic Approaches for Reliability-Based Design Optimization
,”
AIAA J.
0001-1452,
42
(
1
), pp.
124
131
.
21.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
L.
, 2005, “
Enriched Performance Measure Approach for Reliability-Based Design Optimization
,”
AIAA J.
0001-1452,
43
(
4
), pp.
874
884
.
22.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 1999, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
121
(
4
), pp.
557
564
.
23.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Nikolaidis
,
E.
, 2007, “
A Single-Loop Approach for System Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
129
(
12
), pp.
1215
1224
.
24.
Agarwal
,
H.
,
Mozumder
,
C. K.
,
Renaud
,
J. E.
, and
Watson
,
L. T.
, 2007, “
An Inverse-Measure-Based Unilevel Architecture for Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
33
(
3
), pp.
217
227
.
25.
Chiralaksanakul
,
A.
, and
Mahadevan
,
S.
, 2007, “
Decoupled Approach to Multidisciplinary Design Optimization Under Uncertainty
,”
Optim. Eng.
1389-4420,
8
(
1
), pp.
21
42
.
26.
Mcdonald
,
M.
, and
Mahadevan
,
S.
, 2008, “
Design Optimization With System-Level Reliability Constraints
,”
ASME J. Mech. Des.
0161-8458,
130
(
2
), p.
021403
.
27.
Rosenblatt
,
M.
, 1952, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
0003-4851,
23
(
3
), pp.
470
472
.
28.
Lin
,
P. T.
,
Gea
,
H. C.
, and
Jaluria
,
Y.
, 2009, “
A Modified Reliability Index Approach for Reliability-Based Design Optimization
,”
Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2009
, San Diego, CA, Paper No. DETC 2009-87804.
29.
Zhang
,
Y.
, and
Kiureghian
,
A. D.
, 1995, “
Two Improved Algorithms for Reliability Analysis
,”
R.
Rackwitz
,
G.
Augusti
, and
G.
Borri
, Editors,
Proceedings of the Sixth IFIP WG 7.5 Conference
, Assisi, 1994,
Chapman and Hall
,
London
, pp.
297
304
.
30.
Tvedt
,
L.
, 1983, “
Two Second-Order Approximations to the Failure Probability
,” Det Norske Veritas, Technical Report No. RDIV/20-004083.
31.
Zhao
,
Y. G.
, and
Ono
,
T.
, 1999, “
New Approximations for SORM: Part 1
,”
J. Eng. Mech.
0733-9399,
125
(
1
), pp.
79
85
.
32.
Johnson
,
N.
,
Kotz
,
S.
, and
Balakrishnan
,
N.
, 1994,
Continuous Univariate Distributions
,
2nd ed.
,
Wiley
,
New York
, Vol.
1
.
33.
Daniels
,
H.
, 1954, “
Saddlepoint Approximations in Statistics
,”
Ann. Math. Stat.
0003-4851,
25
(
4
), pp.
631
650
.
34.
Goutis
,
C.
, and
Casella
,
G.
, 1999, “
Explaining the Saddlepoint Approximation
,”
Am. Stat.
0003-1305,
53
(
3
), pp.
216
224
.
35.
Huzurbazar
,
S.
, 1999, “
Practical Saddlepoint Approximations
,”
Am. Stat.
0003-1305,
53
(
3
), pp.
225
232
.
36.
Lugannani
,
R.
, and
Rice
,
S.
, 1980, “
Saddle Point Approximation for the Distribution of the Sum of Independent Random Variables
,”
Adv. Appl. Probab.
0001-8678,
12
(
2
), pp.
475
490
.
37.
Huang
,
B.
, and
Du
,
X.
, 2008, “
Probabilistic Uncertainty Analysis by Mean-Value First Order Saddlepoint Approximation
,”
Reliab. Eng. Syst. Saf.
0951-8320,
93
(
2
), pp.
325
336
.
38.
Rao
,
S. S.
, and
Bhatti
,
P. K.
, 2001, “
Probabilistic Approach to Manipulator Kinematics and Dynamics
,”
Reliab. Eng. Syst. Saf.
0951-8320,
72
(
1
), pp.
47
58
.
39.
Tsai
,
M. J.
, and
Lai
,
T. H.
, 2008, “
Accuracy Analysis of a Multi-Loop Linkage With Joint Clearances
,”
Mech. Mach. Theory
0094-114X,
43
(
9
), pp.
1141
1157
.
40.
Choubey
,
M.
, and
Rao
,
A. C.
, 1982, “
Synthesizing Linkages With Minimal Structural and Mechanical Error Based Upon Tolerance Allocation
,”
Mech. Mach. Theory
0094-114X,
17
(
2
), pp.
91
97
.
41.
Choi
,
J. H.
,
Lee
,
S. J.
, and
Choi
,
D. H.
, 1998, “
Stochastic Linkage Modeling for Mechanical Error Analysis of Planar Mechanisms
,”
Mech. Struct. Mach.
0890-5452,
26
(
3
), pp.
257
276
.
42.
Mallik
,
A. K.
, and
Dhande
,
S. G.
, 1987, “
Analysis and Synthesis of Mechanical Error in Path-Generating Linkages Using a Stochastic Approach
,”
Mech. Mach. Theory
0094-114X,
22
(
2
), pp.
115
123
.
43.
Zhu
,
J.
, and
Ting
,
K. L.
, 2000, “
Uncertainty Analysis of Planar and Spatial Robots With Joint Clearances
,”
Mech. Mach. Theory
0094-114X,
35
(
9
), pp.
1239
1256
.
44.
Chakraborty
,
J.
, 1975, “
Synthesis of Mechanical Error in Linkages
,”
Mech. Mach. Theory
0094-114X,
10
(
2–3
), pp.
155
165
.
45.
Xu
,
W.
, and
Zhang
,
Q.
, 1989, “
Probabilistic Analysis and Monte Carlo Simulation of the Kinematic Error in a Spatial Linkage
,”
Mech. Mach. Theory
0094-114X,
24
(
1
), pp.
19
27
.
46.
Chatterjee
,
G. B.
, and
Mallik
,
A. K.
, 1987, “
Mechanical Error of a Four-Bar Linkage Coupler Curve
,”
Mech. Mach. Theory
0094-114X,
22
(
1
), pp.
85
88
.
47.
Du
,
X.
, 2010, “
System Reliability Analysis With Saddlepoint Approximation
,”
Struct. Multidiscip. Optim.
1615-147X,
42
(
2
), pp.
193
208
.
48.
Der Kiureghian
,
A.
, and
Dakessian
,
T.
, 1998, “
Multiple Design Points in First and Second-Order Reliability
,”
Struct. Safety
0167-4730,
20
(
1
), pp.
37
49
.
You do not currently have access to this content.