Compliant cellular structures with an internal contact mechanism are described in this paper. Contact during deformation reduces failure-causing bending stresses through stress relief, thereby enabling such cellular structures to be stretched more than the corresponding structures without contact. Finite element analysis (FEA) is carried out to simulate the structure. An analytical model is developed to get results quicker than FEA and to develop insight into the mechanics of the deformation process. The error in prediction of the maximum stretching capacity using the analytical model is less than 7% when compared with finite element simulations. Several materials are investigated for such structures. Although the allowable strain of all these materials is small, the overall strain of the contact-aided cellular structures is at least an order of magnitude greater than that of the constitutive material. The contact mechanism and the induced stress relief increase the stretching capacity of the contact-aided cellular structures by as much as 100%. Experiments are conducted to validate the models, and good agreement is found. A high-strain morphing aircraft skin is examined as an application of these mechanisms. The results indicate that the proposed skin structure not only increases the morphing capacity but also decreases the structural mass by 13% as compared with a cellular skin without contact.

1.
Howell
,
L. L.
, 2002,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1997,
Cellular Solids—Structure and Properties
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
3.
Alderson
,
A.
, and
Evans
,
K.
, 1995, “
Microstructural Modeling of Auxetic Microporous Polymers
,”
J. Mater. Sci.
0022-2461,
30
(
13
), pp.
3319
3332
.
4.
Scarpa
,
F.
, and
Tomlinson
,
G.
, 2000, “
Theoretical Characteristics of the Vibration of Sandwich Plates With In-Plane Negative Poisson’s Ratio Values
,”
J. Sound Vib.
0022-460X,
230
(
1
), pp.
45
67
.
5.
Olympio
,
K. R.
, and
Gandhi
,
F.
, 2006, “
Design Of Flexible Skins for Morphing Aircraft Structures Using Honeycomb Cores
,”
47th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, pp.
1
15
.
6.
Jha
,
A. K.
, and
Kudva
,
J. N.
, 2004, “
Morphing Aircraft Concepts, Classifications and Challenges
,”
Proc. SPIE
0277-786X,
5388
, pp.
213
224
.
7.
Bornengo
,
D.
,
Scarpa
,
F.
, and
Remillat
,
C.
, 2005, “
Evaluation of Hexagonal Chiral Structure Formorphing Airfoil Concept
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
219
(
3
), pp.
185
192
. 0954-4100
8.
Olympio
,
K. R.
, and
Gandhi
,
F.
, 2006, “
Zero-ν Cellular Honeycomb Flexible Skin for One-Dimensional Wing Morphing
,”
47th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, pp.
374
401
.
9.
Henry
,
C.
, and
McKnight
,
G.
, 2006, “
Cellular Variable Stiffness Materials for Ultra-Large Reversible Deformations in Reconfigurable Structures
,”
Proc. SPIE
0277-786X,
6170
, pp.
1
12
.
10.
Shaw
,
J. A.
,
Grummon
,
D. S.
, and
Foltz
,
J.
, 2007, “
Superelastic NiTi Honeycombs: Fabrication and Experiments
,”
Smart Mater. Struct.
0964-1726,
16
, pp.
S170
S178
.
11.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2007, “
Synthesis of Contact-Aided Compliant Mechanisms for Non-Smooth Path Generation
,”
Int. J. Numer. Methods Eng.
0029-5981,
69
(
12
), pp.
2564
2605
.
12.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2004, “
A Novel Compliant Mechanism for Converting Reciprocating Translation Into Enclosing Curved Paths
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
667
672
.
13.
Cannon
,
J. R.
, and
Howell
,
L. L.
, 2005, “
A Compliant Contact-Aided Revolute Joint
,”
Mech. Mach. Theory
0094-114X,
40
, pp.
1273
1293
.
14.
Guerinot
,
A. E.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Todd
,
R. H.
, 2005, “
Compliant Joint Design Principles for High Compressive Load Situations
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
774
781
.
15.
Scarpa
,
F.
,
Panayiotou
,
P.
, and
Tomlinson
,
G.
, 2000, “
Numerical and Experimental Uniaxialloading on In-Plane Auxetic Honeycombs
,”
J. Strain Anal. Eng. Des.
0309-3247,
35
(
5
), pp.
383
388
.
16.
Wan
,
H.
,
Ohtaki
,
H.
,
Kotosaka
,
S.
, and
Hu
,
G.
, 2004, “
A Study of Negative Poisson’s Ratios in Auxetic Honeycombs Based on a Large Deflection Model
,”
Eur. J. Mech. A/Solids
0997-7538,
23
(
1
), pp.
95
106
.
17.
Roark
,
R. J.
, and
Young
,
W. C.
, 1975,
Formulas for Stress and Strain
,
5th ed.
,
McGraw-Hill
,
New York
.
18.
Timoshenko
,
S.
, and
Gere
,
J.
, 1961,
Theory of Elastic Stability
,
2nd ed.
,
McGraw-Hill
,
New York
.
20.
Aguirre
,
M. E.
,
Hayes
,
G.
,
Frecker
,
M.
,
Adair
,
J.
, and
Antolino
,
N.
, 2008, “
Fabrication and Design of a Nanoparticulate Enabled Micro Forceps
,”
Proceedings of the ASME IDETC/CIE
.
21.
Antolino
,
N. E.
,
Hayes
,
G.
,
Kirkpatrick
,
R.
,
Muhlstein
,
C. L.
,
Frecker
,
M. I.
,
Mockensturm
,
E.
, and
Adair
,
J. H.
, 2009, “
Lost Mold Rapid Infiltration Forming of Mesoscale Ceramics: Part 1, Fabrication
,”
J. Am. Ceram. Soc.
0002-7820,
92
(
s1
), pp.
S63
S69
.
22.
Antolino
,
N. E.
,
Hayes
,
G.
,
Kirkpatrick
,
R.
,
Muhlstein
,
C. L.
,
Frecker
,
M. I.
,
Mockensturm
,
E.
, and
Adair
,
J. H.
, 2009, “
Lost Mold Rapid Infiltration Forming of Mesoscale Ceramics: Part 2, Geometry and Strength Improvement
,”
J. Am. Ceram. Soc.
0002-7820,
92
(
s1
), pp.
S70
S78
.
23.
Mehta
,
V.
,
Frecker
,
M.
, and
Lesieutre
,
G.
, 2008, “
Contact-Aided Compliant Mechanisms Formorphing Aircraft Skin
,”
Proc. SPIE
0277-786X,
6926
, pp.
1
12
.
24.
Joo
,
J. J.
,
Sanders
,
B.
,
Johnson
,
T.
, and
Frecker
,
M. I.
, 2006, “
Optimal Actuator Location Within a Morphing Wing Scissor Mechanism Configuration
,”
Proc. SPIE
0277-786X,
6166
, pp.
1
12
.
25.
Lesieutre
,
G. A.
,
Browne
,
J. A.
, and
Frecker
,
M. I.
, 2006, “
Scaling and Performance, Weight and Actuation of a 2-D Compliant Cellular Frame Structure for a Morphing Wing
,”
Proceedings of the 17th International Conference on Adaptive Structures and Technologies
, pp.
1
8
.
26.
Jacobs
,
E. N.
, 1934, “
Airfoil Section Characteristics as Affected by Protuberances
,” NACA Technical Report No. 46.
27.
Ventsel
,
E.
, and
Krauthammer
,
T.
, 2001,
Thin Plates and Shells: Thoery, Analysis and Applications
,
Marcel Dekker
,
New York
.
You do not currently have access to this content.