Human appraisals are becoming increasingly important in the design of engineering systems to link engineering design attributes to customer preferences. Human appraisals are used to assess consumers’ opinions of a given product design, and are unique in that the experiment response is a function of both the product attributes and the respondents’ human attributes. The design of a human appraisal is characterized as a split-plot design, in which the respondents’ human attributes form the whole-plot factors while the product attributes form the split-plot factors. The experiments are also characterized by random block effects, in which the design configurations evaluated by a single respondent form a block. An experimental design algorithm is needed for human appraisal experiments because standard experimental designs often do not meet the needs of these experiments. In this work, an algorithmic approach to identify the optimal design for a human appraisal experiment is developed, which considers the effects of respondent fatigue and the blocked and split-plot structures of such a design. The developed algorithm seeks to identify the experimental design, which maximizes the determinant of the Fisher information matrix. The algorithm is derived assuming an ordered logit model will be used to model the rating responses. The advantages of this approach over competing approaches for minimizing the number of appraisal experiments and model-building efficiency are demonstrated using an automotive interior package human appraisal as an example.

1.
Li
,
H.
, and
Azarm
,
S.
, 2000, “
Product Design Selection Under Uncertainty and With Competitive Advantage
,”
ASME J. Mech. Des.
0161-8458,
122
(
4
), pp.
411
418
.
2.
Petiot
,
J. F.
, and
Yannou
,
B.
, 2004, “
Measuring Consumer Perceptions for a Better Comprehension, Specification and Assessment of Product Semantics
,”
Int. J. Ind. Ergonom.
0169-8141,
33
(
6
), pp.
507
525
.
3.
Michalek
,
J. J.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
, 2005, “
Linking Marketing and Engineering Product Design Decisions Via Analytical Target Cascading
,”
J. Prod. Innovation Manage.
0737-6782,
22
(
1
), pp.
42
62
.
4.
MacDonald
,
E.
,
Gonzalez
,
R.
, and
Papalambros
,
P. Y.
, 2007, “
Preference Inconsistency in Multidisciplinary Design Decision Making
,”
Proceedings of the 2007 International Design Engineering Technical Conferences
, Las Vegas, NV, Sept. 4–8.
5.
Besharati
,
B.
,
Azarm
,
S.
, and
Farhang-Mehr
,
A.
, 2002, “
A Customer-Based Expected Utility Metric for Product Design Selection
,”
Proceedings of ASME 2002 IDETC Conference
, Montreal, Canada, Sept. 29–Oct. 2.
6.
Wassenaar
,
H. J.
, and
Chen
,
W.
, 2003, “
An Approach to Decision-Based Design With Discrete Choice Analysis for Demand Modeling
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
490
497
.
7.
Kumar
,
D.
,
Hoyle
,
C.
,
Chen
,
W.
,
Wang
,
N.
,
Gomez-Levi
,
G.
, and
Koppelman
,
F.
, 2009, “Incorporating Customer Preferences and Market Trends in Vehicle Package Design,” Int. J. Prod. Dev., 8(3), pp. 228–251. 1477-9056
8.
Wang
,
N.
,
Kiridena
,
V.
,
Gomez-Levi
,
G.
, and
Wan
,
J.
, 2006, “
Design and Verification of a New Computer Controlled Seating Buck
,”
Proceedings of the 2006 ASME IDETC/CIE
, Philadelphia, PA, Sept. 10–13.
9.
Louviere
,
J. J.
,
Hensher
,
D. A.
, and
Swait
,
J. D.
, 2000,
Stated Choice Methods: Analysis and Application
,
Cambridge University Press
,
New York
.
10.
Cox
,
E. P.
, III
, 1980, “
The Optimal Number of Response Alternatives for a Scale: A Review
,”
J. Mark. Res.
0022-2437,
17
(
4
), pp.
407
422
.
11.
Green
,
P. E.
, and
Rao
,
V. R.
, 1970, “
Rating Scales and Information Recovery. How Many Scales and Response Categories to Use?
,”
J. Marketing
0022-2429,
34
(
3
), pp.
33
39
.
12.
McKelvey
,
R. D.
, and
Zavoina
,
W.
, 1975, “
A Statistical Model for the Analysis of Ordinal Level Dependent Variables
,”
J. Math. Sociol.
0022-250X,
4
(
1
), pp.
103
120
.
13.
McCullagh
,
P.
, 1980, “
Regression Models for Ordinal Data
,”
J. R. Stat. Soc. Ser. B (Methodol.)
0035-9246,
42
(
2
), pp.
109
142
.
14.
Box
,
G. E. P.
,
Hunter
,
J. S.
, and
Hunter
,
W. G.
, 2005,
Statistics for Experimenters: Design, Innovation, and Discovery
,
Wiley
,
New York
.
15.
Stevens
,
S. S.
, 1986,
Psychophysics: Introduction to Its Perceptual, Neural, and Social Prospects
,
Transaction Publishers
,
New Brunswick, NJ
.
16.
Kuhfeld
,
W. F.
,
Tobias
,
R. D.
, and
Garratt
,
M.
, 1994, “
Efficient Experimental Design With Marketing Research Applications
,”
J. Mark. Res.
0022-2437,
31
(
4
), pp.
545
557
.
17.
Steckel
,
J. H.
,
DeSarbo
,
W. S.
, and
Mahajan
,
V.
, 1991, “
On the Creation of Acceptable Conjoint Analysis Experimental Designs
,”
Decision Sci.
0011-7315,
22
(
2
), pp.
435
442
.
18.
Montgomery
,
D. C.
, 2005,
Design and Analysis of Experiments
,
Wiley
,
New York
.
19.
Simpson
,
T. W.
,
Poplinski
,
J. D.
,
Koch
,
P. N.
, and
Allen
,
J. K.
, 2001, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
0263-4759,
17
(
2
), pp.
129
150
.
20.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
, 2001, “
Comparative Studies of Metamodeling Techniques Under Multiple Modeling Criteria
,”
Struct. Multidiscip. Optim.
1615-147X,
23
(
1
), pp.
1
13
.
21.
Green
,
P. E.
, and
Srinivasan
,
V.
, 1978, “
Conjoint Analysis in Consumer Research: Issues and Outlook
,”
J. Consum. Res.
0093-5301,
5
(
2
), pp.
103
123
.
22.
Garneau
,
C. J.
, and
Parkinson
,
M. B.
, 2007, “
Including Preference in Anthropometry-Driven Models for Design
,”
2007 ASME Design Engineering Technical Conference (DETC)
, Las Vegas, NV.
23.
Phadke
,
M. S.
, 1995,
Quality Engineering Using Robust Design
,
Prentice-Hall
,
Upper Saddle River, NJ
.
24.
Green
,
P. E.
,
Krieger
,
A. M.
, and
Agarwal
,
M. K.
, 1991, “
Adaptive Conjoint Analysis: Some Caveats and Suggestions
,”
J. Mark. Res.
0022-2437,
28
(
2
), pp.
215
222
.
25.
Frey
,
D. D.
,
Engelhardt
,
F.
, and
Greitzer
,
E. M.
, 2003, “
“A Role for One-Factor-at-a-Time” Experimentation in Parameter Design
,”
Res. Eng. Des.
0934-9839,
14
(
2
), pp.
65
74
.
26.
Atkinson
,
A. C.
, and
Donev
,
A. N.
, 1992,
Optimum Experimental Designs
,
Oxford University Press
,
Oxford
.
27.
Kessels
,
R.
,
Goos
,
P.
, and
Vandebroek
,
M.
, 2008, “Optimal Designs for Conjoint Experiments,” Computational Statistics & Data Analysis, 52(5), pp. 2369–2387.
28.
Goos
,
P.
, 2002,
The Optimal Design of Blocked and Split-Plot Experiments
,
Springer-Verlag
,
New York
.
29.
Sandor
,
Z.
, and
Wedel
,
M.
, 2001, “
Designing Conjoint Choice Experiments Using Managers’ Prior Beliefs
,”
J. Mark. Res.
0022-2437,
38
(
4
), pp.
430
444
.
30.
Kessels
,
R.
,
Goos
,
P.
, and
Vandebroek
,
M.
, 2006, “
A Comparison of Criteria to Design Efficient Choice Experiments
,”
J. Mark. Res.
0022-2437,
43
(
3
), pp.
409
419
.
31.
Zocchi
,
S. S.
, and
Atkinson
,
A. C.
, 1999, “
Optimum Experimental Designs for Multinomial Logistic Models
,”
Biometrics
0006-341X,
55
(
2
), pp.
437
444
.
32.
Chipman
,
H. A.
, and
Welch
,
W. J.
, 1996, “
D-Optimal Design for Generalized Linear Models
,” unpublished.
33.
Liang
,
K.
, and
Zeger
,
S. L.
, 1986, “
Longitudinal Data Analysis Using Generalized Linear Models
,”
Biometrika
0006-3444,
73
(
1
), pp.
13
22
.
34.
Williamson
,
J. M.
,
Kim
,
K.
, and
Lipsitz
,
S. R.
, 1995, “
Analyzing Bivariate Ordinal Data Using a Global Odds Ratio
,”
J. Am. Stat. Assoc.
0162-1459,
90
(
432
), pp.
1432
1437
.
35.
Hines
,
R.
, 1998, “
Comparison of Two Covariance Structures in the Analysis of Clustered Polytomous Data Using Generalized Estimating Equations
,”
Biometrics
0006-341X,
54
(
1
), pp.
312
316
.
36.
Zorn
,
C. J. W.
, 2001, “
Generalized Estimating Equation Models for Correlated Data: A Review With Applications
,”
Am. J. Pol. Sci.
,
45
(
2
), pp.
470
490
. 0092-5853
37.
Stata Corporation
, 2007, STATASE 9.2, College Station, TX.
38.
Goos
,
P.
, and
Vandebroek
,
M.
, 2004, “
Outperforming Completely Randomized Designs
,”
J. Quality Technol.
0022-4065,
36
(
1
), pp.
12
26
.
39.
Tamhane
,
A. C.
, and
Dunlop
,
D. D.
, 2000,
Statistics and Data Analysis: From Elementary to Intermediate
,
Prentice-Hall
,
Upper Saddle River, NJ
.
40.
Society of Automotive Engineers
, 2002, “
Surface Vehicle Recommended Practice-Motor Vehicle Dimensions
,” Human Accommodation and Design Devices Standards Commission, SAE Paper No. J1100.
41.
Train
,
K. E.
, 2003,
Discrete Choice Methods With Simulation
,
Cambridge University Press
,
Cambridge
.
42.
Johnson
,
V. E.
, and
Albert
,
J. H.
, 1999,
Ordinal Data Modeling
,
Springer
,
New York
.
You do not currently have access to this content.