Invented more than 200 years ago, the automatic winding device of mechanical watch movement is one of the most successful energy harvesting devices. It harvests the kinematical energy from body movements and drives the mechanical watch movement. According to literatures, however, few have studied its kinematics in detail. In this paper, the kinematical model of automatic winding device is developed. The model is a pendulum model with a set of gears that converts the bidirectional motion to unidirectional motion. The simulation shows that the efficiency of the device is about 46.3%. Experiment validations are also conducted, which confirm the simulation results. With some modifications, it can be used to drive various mobile electronic devices.

1.
Starner
,
T.
, and
Paradiso
,
J.
, 2004,
Low-Power Electronics Design
,
CRC Press
,
New York
, Chap. 45.
2.
Sato
,
N.
,
Ishii
,
H.
,
Urano
,
M.
,
Sakata
,
T.
,
Terada
,
J.
,
Morimura
,
H.
,
Shigematsu
,
S.
,
Kudou
,
K.
,
Kamei
,
T.
, and
Machida
,
K.
, 2005, “
Novel MEMS Power Generator With Integrated Thermoelectric and Vibrational Devices
,”
Proceedings of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems
, Korea, pp.
295
298
.
3.
Turri
,
S.
,
Miller
,
D.
,
Ben Ahmed
,
H.
, and
Multon
,
B.
, 2003, “Design of an Electro-Mechanical Portable System Using Natural Human Body Movements for Electricity Generation,” Proc. EPE'2003, France, CDROM.
4.
Beeby
,
S.
,
Tudor
,
M.
, and
White
,
N.
, 2006, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
0957-0233,
17
(
12
), pp.
R175
R195
.
5.
Stephen
,
N.
, 2006, “
On Energy Harvesting From Ambient Vibration
,”
J. Sound Vib.
0022-460X,
293
(
1–2
), pp.
409
425
.
6.
Roundy
,
S.
,
Wright
,
P.
, and
Rabaey
,
J.
, 2003, “
A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes
,”
Comput. Commun.
0140-3664,
26
(
11
), pp.
1131
1144
.
7.
Markvart
,
T.
, 2000, “Light Harvesting for Quantum Solar Energy Conversion,” Process in Quantum Electronics, 24(3–4), pp. 107–186.
8.
Deshpande
,
M.
, and
Saggere
,
L.
, 2005, “
Modeling and Design of an Optically Powered Microactuator for a Microfluidic Dispenser
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
825
836
.
9.
Shenck
,
N. S.
, and
Paradiso
,
J. A.
, 2001, “
Energy Scavenging With Shoe-Mounted Piezoelectrics
,”
IEEE MICRO
0272-1732,
21
(
3
), pp.
30
42
.
10.
Kornbluh
,
R.
,
Pelrine
,
R.
,
Pei
,
Q.
,
Heydt
,
R.
,
Stanford
,
S.
,
Oh
,
S.
, and
Eckerle
,
J.
, 2002, “
Electroelastomers: Applications of Dielectric Elastomer Transducers for Actuation, Generation, and Smart Structures
,”
Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies
, Vol.
4698
,
R.
McGowan
, ed.,
SPIE
,
San Diego, CA
, pp.
254
270
.
11.
Rome
,
L.
,
Flynn
,
L.
,
Goldman
,
E. M.
, and
Yoo
,
T. D.
, 2005, “
Generating Electricity While Walking With Loads
,”
Science
0036-8075,
309
, pp.
1725
1728
.
12.
Donelan
,
J. M.
,
Naing
,
V.
,
Hoffer
,
J. A.
,
Weber
,
D. J.
, and
Kuo
,
A. D.
, 2008, “
Biomechanical Energy Harvesting: Generating Electricity During Walking With Minimal User Effort
,”
Science
0036-8075,
319
, pp.
807
810
.
13.
Reymondin
,
C. A.
,
Monnier
,
G.
,
Jeanneret
,
D.
, and
Pelaratti
,
U.
, 1999,
The Theory of Horology
,
Technical College of Vallee de Joux
,
Switzerland
.
15.
Rolex Corporation
, www.rolex.comwww.rolex.com.
16.
19.
Menet
,
C.
, and
Jacot
,
J.
, 2007, “
Simulation of the Winding of the Mainspring by the Automatic Winding of an ETA2824 Movement Worn by a Walking Person
,” Master Project, Laboratoire de Production Microtechnique, EPFL, Switzerland.
You do not currently have access to this content.