Crashworthiness design is an evolving discipline that combines vehicle crash simulation and design synthesis. The goal is to increase passenger safety subject to manufacturing cost constraints. The crashworthiness design process requires modeling of the complex interactions involved in a crash event. Current approaches utilize a parametrized optimization approach that requires response surface approximations of the design space. This is due to the expensive nature of numerical crash simulations and the high nonlinearity and noisiness in the design space. These methodologies usually require a significant effort to determine an initial design concept. In this paper, a heuristic approach to continuum-based topology optimization is developed for crashworthiness design. The methodology utilizes the cellular automata paradigm to generate three-dimensional design concepts. Furthermore, a constraint on maximum displacement is implemented to maintain a desired performance of the structures synthesized. Example design problems are used to demonstrate that the proposed methodology converges to a final topology in an efficient manner.

1.
Hamza
,
K.
, and
Saitou
,
K.
, 2005, “
Design Optimization of Vehicle Structures for Crashworthiness Using Equivalent Mechanism Approximations
,”
ASME J. Mech. Des.
0161-8458,
127
(
3
), pp.
485
492
.
2.
Yoshimura
,
M.
,
Nishiwaki
,
S.
, and
Izui
,
K.
, 2005, “
A Multiple Cross-Sectional Shape Optimization Method for Automotive Body Frames
,”
ASME J. Mech. Des.
0161-8458,
127
(
1
), pp.
49
57
.
3.
Zhang
,
Y.
,
Zhu
,
P.
,
Chen
,
G. L.
, and
Lin
,
Z. Q.
, 2007, “
Study on Structural Lightweight Design of Automotive Front Side Rail Based on Response Surface Method
,”
ASME J. Mech. Des.
0161-8458,
129
(
5
), pp.
553
557
.
4.
Bendsoe
,
M. P.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Optimal Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
, pp.
197
224
.
5.
Mayer
,
R. R.
,
Kikuchi
,
N.
, and
Scott
,
R. A.
, 1996, “
Applications of Topology Optimization Techniques to Structural Crashworthiness
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
1383
1403
.
6.
Pedersen
,
C. B. W.
, 2003, “
Topology Optimization Design of Crushed 2d-Frames for Desired Energy Absorption
,”
Struct. Multidiscip. Optim.
1615-147X,
25
, pp.
368
382
.
7.
Svanberg
,
K.
, 1987, “
The Method of Moving Asymptotes a New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
, pp.
359
373
.
8.
Soto
,
C. A.
, 2004, “
Structural Topology Optimization for Crashworthiness
,”
Int. J. Numer. Methods Eng.
0029-5981,
9
(
3
), pp.
277
283
.
9.
Cho
,
M.
, and
Kim
,
H.
, 2006, “
Improved Semi-Analytic Sensitivity Analysis Combined With a Higher Order Approximation Scheme in the Framework of Adjoint Variable Method
,”
Comput. Struct.
0045-7949,
84
(
29–30
), pp.
1827
1840
.
10.
Iollo
,
A.
,
Salas
,
M. D.
, and
Taasan
,
S.
, 1993, “
Shape Optimization Governed by the Euler Equations Using an Adjoint Method
,” National Aeronautics and Space Administration, Langley Research Center, Hampton, VA; National Technical Information Service, Springfield, VA.
11.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
2683
2705
.
12.
Tovar
,
A.
, 2004, “
Bone Remodeling as a Hybrid Cellular Automaton Optimization Process
,” Ph.D. thesis, University of Notre Dame, Notre Dame, IN.
13.
Tovar
,
A.
,
Patel
,
N. M.
,
Tillotson
,
D.
,
Kaushik
,
A. K.
, and
Renaud
,
J. E.
, 2007, “
Optimality Conditions of the Hybrid Cellular Automata for Structural Optimization
,”
AIAA J.
0001-1452,
45
(
3
), pp.
673
683
.
14.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 1989,
Topology Optimization: Theory, Methods and Applications
,
Springer-Verlag
,
Berlin
.
15.
Rozvany
,
G. I. N.
, 1997,
Topology Optimization in Structural Mechanics
,
Springer
,
New York
.
16.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
, 2001, “
Topology Optimization of Continuum Structures: A Review
,”
Appl. Mech. Rev.
0003-6900,
54
, pp.
331
390
.
17.
Bathe
,
K. -J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
18.
Rozvany
,
G. I. N.
,
Bendsoe
,
M. P.
, and
Kirsh
,
U.
, 1995, “
Optimality Criteria: A Basis for Multidisciplinary Optimization
,”
Appl. Mech. Rev.
0003-6900,
48
, pp.
41
119
.
19.
Yoon
,
G. -H.
, and
Kim
,
Y. -Y.
, 2007, “
Topology Optimization of Material-Nonlinear Continuum Structures by the Element Connectivity Parameterization
,”
Int. J. Numer. Methods Eng.
0029-5981,
69
, pp.
2196
2218
.
20.
Bendsoe
,
M. P.
, 1989, “
Optimal Shape Design as a Material Distribution Problem
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
1
, pp.
193
202
.
21.
Patel
,
N. M.
,
Kang
,
B. -S.
, and
Renaud
,
J. E.
, 2006, “
Topology Synthesis of Structures Under Impact Loading Using a Hybrid Cellular Automaton Algorithm
,”
Proceedings of the 11th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Portsmouth, VA.
22.
Abdalla
,
M.
, and
Gürdal
,
Z.
, 2002, “
Structural Design Using Optimality Based Cellular Automata
,”
43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Denver, CO, Paper Nos. AIAA 2004-17862 and AIAA-2002-1676.
23.
Missoum
,
S.
,
Gürdal
,
Z.
, and
Setoodeh
,
S.
, 2005, “
Study of a New Local Update Scheme for Cellular Automata in Structural Design
,”
Struct. Multidiscip. Optim.
1615-147X,
29
(
2
), pp.
103
112
.
24.
Inou
,
N.
,
Shimotai
,
N.
, and
Uesugi
,
T.
, 1994, “
Cellular Automaton Generating Topological Structures
,”
Second European Conference on Smart Structures and Materials
, Glasgow, UK, Paper No. 2361-08, pp.
47
50
.
25.
Inou
,
N.
,
Uesugi
,
T.
,
Iwasaki
,
A.
, and
Ujihashi
,
S.
, 1998, “
Self-Organization of Mechanical Structure by Cellular Automata
,”
Fracture and Strength of Solids
,
145-149
(
2
), pp.
1115
1120
.
26.
Kita
,
E.
, and
Toyoda
,
T.
, 2000, “
Structural Design Using Cellular Automata
,”
Struct. Multidiscip. Optim.
1615-147X,
19
, pp.
64
73
.
27.
Haftka
,
R. T.
,
Gürdal
,
Z.
, and
Kamat
,
M. P.
, 1990,
Elements of Structural Optimization
,
2nd ed.
,
Kluwer Academic
,
Dordrecht, The Netherlands
.
28.
Tovar
,
A.
,
Niebur
,
G. L.
,
Sen
,
M.
, and
Renaud
,
J. E.
, 2006, “
Topology Optimization Using a Hybrid Cellular Automaton Approach With Distributed Control
,”
ASME J. Mech. Des.
0161-8458,
128
(
6
), pp.
1205
1216
.
29.
Patel
,
N. M.
,
Tillotson
,
D.
,
Tovar
,
A.
,
Izui
,
K.
, and
Renaud
,
J. E.
, 2008, “
A Comparative Study of Topology Optimization Techniques
,”
AIAA J.
0001-1452,
46
(
8
), pp.
1963
1975
.
30.
Tovar
,
A.
,
Patel
,
N. M.
,
Kaushik
,
A. K.
,
Letona
,
G. A.
, and
Renaud
,
J. E.
, 2004, “
Hybrid Cellular Automata: A Biologically-Inspired Structural Optimization Technique
,”
Proceedings of the Tenth AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Albany, NY, Paper No. AIAA 2004-4558.
31.
Patel
,
N. M.
, 2007, “
Crashworthiness Design Using Topology Optimization
,” Ph.D. thesis, University of Notre Dame, Notre Dame, IN.
32.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
, 2003, “
An Element Removal and Reintroduction Strategy for the Topology Optimization of Structures and Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
(
10
), pp.
1413
1430
.
33.
Kočvara
,
M.
, 1997, “
Topology Optimization With Displacement Constraints: A Bilevel Programming Approach
,”
Struct. Optim.
0934-4373,
14
(
4
), pp.
256
263
.
34.
Deqing
,
Y.
,
Yunkang
,
S.
,
Zhengxing
,
L.
, and
Huanchun
,
S.
, 2000, “
Topology Optimization Design of Continuum Structures Under Stress and Displacement Constraints
,”
Appl. Math. Mech.
0253-4827,
21
, pp.
19
44
.
35.
Byrd
,
R. H.
,
Gilbert
,
J. C.
, and
Nocedal
,
J.
, 2000, “
A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming
,”
Math. Program.
0025-5610,
89
(
1
), pp.
149
185
.
36.
Holliquist
,
J.
, 1998, LS-DYNA Theoretical Manual, Livermore Software Technology Corp.
You do not currently have access to this content.