Large displacement static analysis of a fully compliant spatial mechanism is presented here. This mechanism is made up of a superelastic nitinol pipe as its compliant structural member and actuated by three shape memory alloy (SMA) wires. The coupled effect of the force developed by the SMA actuation and the force required for elastica deflection is simplified by incorporating the geometric parameters of the mechanism using a deflection plane approach. An iterative algorithm with elliptical integration has been developed, which is suitable for a wider range of actual and arbitrary inputs. The solutions are obtained for the effect of one-wire and two-wire actuation methods. Results obtained from the deflection plane approach and simulation have been compared and found that the relative error is less than 1% within the safe operating range of 5% strain value recommended for SMA actuators. Based on the analytical and simulation inputs, the mechanism is miniaturized further with the aim of increasing its workspace and is fabricated for further experimental investigations.

1.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Midha
,
A.
,
Norton
,
T. W.
, and
Howell
,
L. L.
, 1994, “
On the Nomenclature, Classification, and Abstractions of Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
116
, pp.
270
279
.
3.
Midha
,
A.
, and
Howell
,
L. L.
, 1994, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
0161-8458,
116
, pp.
280
290
.
4.
Shinjo
,
N.
, and
Swain
,
G. W.
, 2004, “
Use of a Shape Memory Alloy for the Design of an Oscillatory Propulsion System
,”
IEEE J. Ocean. Eng.
0364-9059,
29
(
3
), pp.
750
755
.
5.
Wolfe
,
T. B.
,
Faulkner
,
M. G.
, and
Wolfaardt
,
J.
, 2005, “
Development of a Shape Memory Alloy Actuator for a Robotic Eye Prosthesis
,”
Smart Mater. Struct.
0964-1726,
14
, pp.
759
768
.
6.
Ishii
,
H.
, and
Ting
,
K. L.
, 2004, “
SMA Actuated Compliant Bistable Mechanisms
,”
Mechatronics
0957-4158,
14
(
4
), pp.
421
437
.
7.
Peirs
,
J.
,
Reynaerts
,
D.
, and
Brussel
,
H. V.
, 1998, “
Design of a Shape Memory Actuated Endoscopic Tip
,”
Sens. Actuators, A
0924-4247,
70
, pp.
135
140
.
8.
Dunlop
,
R.
, and
Garcia
,
A. C.
, 2002, “
A Nitinol Wire Actuated Stewart Platform
,”
Proceedings of 2002 Australian Conference on Robotics and Automation
, Auckland.
9.
Sujan
,
V. A.
, and
Dubowsky
,
S.
, 2004, “
Design of a Lightweight Hyper-Redundant Deployable Binary Manipulator
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
29
39
.
10.
Sreekumar
,
M.
,
Nagarajan
,
T.
,
Singaperumal
,
M.
,
Zoppi
,
M.
, and
Molfino
,
R.
, 2006, “
Design of SMA Actuated Light Weight Parallel Manipulator With Intelligent Controller
,”
Proceedings of Eighth International IFAC Symposium on Robot Control (SYROCO 2006)
, Bologna, Italy.
11.
Simaan
,
N.
,
Taylor
,
R.
, and
Paul
,
F.
, 2004, “
A Dexterous System for Laryngeal Surgery
,”
Proceedings of 2004 ICRA
, New Orleans, LA, pp.
351
357
.
12.
Xu
,
K.
, and
Simaan
,
N.
, 2008, “
An Investigation of the Intrinsic Force Sensing Capabilities of Continuum Robots
,”
IEEE Trans. Rob.
,
24
(
3
), pp.
576
587
.
13.
Saxena
,
A.
, and
Kramer
,
S. N.
, 1998, “
A Simple and Accurate Method for Determining Large Deflections in Compliant Mechanisms Subjected to End Forces and Moments
,”
ASME J. Mech. Des.
0161-8458,
120
, pp.
392
400
.
14.
Howell
,
L. L.
, and
Leonard
,
J. N.
, 1997, “
Optimal Loading Conditions for Non-Linear Deflections
,”
Int. J. Non-Linear Mech.
0020-7462,
32
(
3
), pp.
505
514
.
15.
Venanzi
,
S.
,
Giesen
,
P.
, and
Parenti-Castelli
,
V.
, 2005, “
A Novel Technique for Position Analysis of Planar Compliant Mechanisms
,”
Mech. Mach. Theory
0094-114X,
40
, pp.
1224
1239
.
16.
Shu
,
S. G.
,
Lagoudas
,
D. C.
,
Hughes
,
D.
, and
Wen
,
J. T.
, 1997, “
Modeling of a Flexible Beam Actuated by Shape Memory Alloy Wires
,”
Smart Mater. Struct.
0964-1726,
6
, pp.
265
277
.
17.
Lagoudas
,
D. C.
, and
Tadjbakhsh
,
I. G.
, 1992, “
Active Flexible Rods With Embedded SMA Fibers
,”
Smart Mater. Struct.
0964-1726,
1
, pp.
162
167
.
18.
Icardi
,
U.
, 2001, “
Large Bending Actuator Made With SMA Contractile Wires: Theory, Numerical Simulation and Experiments
,”
Composites, Part B
1359-8368,
32
, pp.
259
267
.
19.
Howell
,
L. L.
, and
Midha
,
A.
, 1995, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
117
, pp.
156
165
.
20.
Kimball
,
C.
, and
Tsai
,
L. W.
, 2002, “
Modeling of Flexural Beams Subjected to Arbitrary End Loads
,”
ASME J. Mech. Des.
0161-8458,
124
, pp.
223
235
.
21.
Krevet
,
B.
, and
Kohl
,
M.
, 2004, “
Finite Element Simulation of SMA Microactuators With Large Deflection
,”
J. Phys. IV France
,
115
, pp.
365
373
.
22.
Kim
,
S.
, and
Cho
,
M.
, 2007, “
Numerical Simulation of a Double SMA Wire Actuator Using the Two-Way Shape Memory Effect of SMA
,”
Smart Mater. Struct.
0964-1726,
16
, pp.
372
381
.
23.
Lagoudas
,
D. C.
, and
Shu
,
S. G.
, 1999, “
Residual Deformation of Active Structures With SMA Actuators
,”
Int. J. Mech. Sci.
0020-7403,
41
, pp.
595
619
.
24.
Terriault
,
P.
,
Viens
,
F.
, and
Brailovski
,
V.
, 2006, “
Non-Isothermal Finite Element Modeling of a Shape Memory Alloy Actuator Using ANSYS
,”
Comput. Mater. Sci.
0927-0256,
36
, pp.
397
410
.
25.
Matsuzaki
,
Y.
,
Naito
,
H.
,
Ikeda
,
T.
, and
Funami
,
K.
, 2001, “
Thermo-Mechanical Behavior Associated With Pseudoelastic Transformation of Shape Memory Alloys
,”
Smart Mater. Struct.
0964-1726,
10
, pp.
884
892
.
26.
Doyle
,
J. F.
, 2001,
Nonlinear Analysis of Thin-Walled Structures: Statics, Dynamics, and Stability
,
Springer-Verlag
,
New York
.
27.
Reddy
,
J. N.
, 2004,
An Introduction to Nonlinear Finite Element Analysis
,
Oxford University Press
,
New York
.
28.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
, 1988,
Theory of Elastic Stability
,
McGraw-Hill
,
New York
.
29.
Wiley
,
J. C.
, and
Genin
,
J.
, 1970, “
Nonlinear Static Behavior of a Cantilever Subjected to an Inclined Follower Force
,”
Appl. Sci. Res.
0003-6994,
23
, pp.
1
15
.
30.
Brinson
,
L. C.
, and
Lammering
,
R.
, 1993, “
Finite Element Analysis of the Behavior of Shape Memory Alloys and Their Applications
,”
Int. J. Solids Struct.
0020-7683,
30
(
23
), pp.
3261
3280
.
31.
Wang
,
X. M.
, and
Yue
,
Z. F.
, 2006, “
Three-Dimensional Thermomechanical Modeling of Pseudoelasticity in Shape Memory Alloys With Different Elastic Properties Between Austenite and Martensite
,”
Mater. Sci. Eng., A
0921-5093,
425
, pp.
83
93
.
32.
Karagulle
,
H.
,
Malgaca
,
L.
, and
Oktem
,
H. F.
, 2004, “
Analysis of Active Vibration Control in Smart Structures by ANSYS
,”
Smart Mater. Struct.
0964-1726,
13
, pp.
661
667
.
33.
Liu
,
Y.
, 2004, “
The Work Production of Shape Memory Alloy
,”
Smart Mater. Struct.
0964-1726,
13
, pp.
552
561
.
34.
Tanikawa
,
T.
, and
Arai
,
T.
, 1999, “
Development of a Micro-Manipulation System Having a Two-Fingered Micro-Hand
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
(
1
), pp.
152
162
.
35.
Raparelli
,
T.
,
Zobel
,
P. B.
, and
Durante
,
F.
, 2002, “
Design of a Parallel Robot Actuated by Shape Memory Alloy Wires
,”
Mater. Trans.
1345-9678,
43
(
5
), pp.
1015
1022
.
36.
Ning
,
K. J.
,
Zhao
,
M. Y.
, and
Liu
,
J.
, 2006, “
A New Wire-Driven Three Degree-of-Freedom Parallel Manipulator
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
816
819
.
You do not currently have access to this content.