A new approach for multi-objective robust design optimization was proposed and applied to a practical design problem with a large number of objective functions. The present approach is assisted by response surface approximation and visual data-mining, and resulted in two major gains regarding computational time and data interpretation. The Kriging model for response surface approximation can markedly reduce the computational time for predictions of robustness. In addition, the use of self-organizing maps as a data-mining technique allows visualization of complicated design information between optimality and robustness in a comprehensible two-dimensional form. Therefore, the extraction and interpretation of trade-off relationships between optimality and robustness of design, and also the location of sweet spots in the design space, can be performed in a comprehensive manner.

1.
Gunawan
,
S.
, and
Azarm
,
S.
, 2005, “
Multi-Objective Robust Optimization Using a Sensitivity Region Concept
,”
Struct. Multidiscip. Optim.
1615-147X,
29
, pp.
50
60
.
2.
Li
,
M.
,
Azarm
,
S.
, and
Aute
,
V.
, 2005, “
A Multi-Objective Genetic Algorithm for Robust Design Optimization
,”
Proceedings of the 2005 Genetic and Evolutionary Computation Conference
,
ACM
,
New York
, pp.
771
778
.
3.
Deb
,
K.
, and
Gupta
,
H.
, 2005, “
Searching for Robust Pareto-Optimal Solutions in Multiobjective Optimization
,”
Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization
,
Springer-Verlag
,
Berlin
, pp.
150
164
.
4.
Ong
,
Y. -S.
,
Nair
,
P. B.
, and
Lum
,
K. Y.
, 2006, “
Max–Min Surrogate-Assisted Evolutionary Algorithm for Robust Design
,”
IEEE Trans. Evol. Comput.
1089-778X,
10
(
4
), pp.
392
404
.
5.
Deb
,
K.
, 2001,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
Chichester
.
6.
Shimoyama
,
K.
,
Oyama
,
A.
, and
Fujii
,
K.
, 2008, “
Development of Multi-Objective Six-Sigma Approach for Robust Design Optimization
,”
J. Aero. Comput. Inf. Commun.
,
5
, pp.
215
233
.
7.
Ray
,
T.
, 2002, “
Constrained Robust Optimal Design Using a Multiobjective Evolutionary Algorithm
,”
Proceedings of the 2002 IEEE Congress on Evolutionary Computation
,
IEEE
,
New York
, Vol.
1
, pp.
419
424
.
8.
Jin
,
Y.
, and
Sendhoff
,
B.
, 2003, “
Trade-Off Between Performance and Robustness: An Evolutionary Multiobjective Approach
,”
Proceedings of the Second International Conference on Evolutionary Multi-Criterion Optimization
,
Springer-Verlag
,
Berlin
, pp.
237
251
.
9.
Engineous Software, Inc.
, 2002, ISIGHT Reference Guide Version 7.1, Engineous Software, Inc..
10.
Myers
,
R. H.
, and
Montgomery
,
D. C.
, 1995,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley
,
New York
.
11.
Jeong
,
S.
,
Minemura
,
Y.
, and
Obayashi
,
S.
, 2006, “
Optimization of Combustion Chamber for Diesel Engine Using Kriging Model
,”
J. Fluid Sci. Technol.
1880-5558,
1
(
2
), pp.
138
146
.
12.
Kantardzic
,
M.
, 2003,
Data Mining: Concepts, Models, Methods and Algorithms
,
IEEE
,
New York
/
Wiley
,
New York
.
13.
Jeong
,
S.
,
Chiba
,
K.
, and
Obayashi
,
S.
, 2005, “
Data Mining for Aerodynamic Design Space
,”
J. Aero. Comput. Inf. Commun.
,
2
, pp.
452
469
.
14.
Kumar
,
A.
,
Keane
,
A. J.
,
Nair
,
P. B.
, and
Shahpar
,
S.
, 2006, “
Robust Design of Compressor Fan Blades Against Erosion
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
864
873
.
15.
Lee
,
K. -H.
, and
Park
,
G. -J.
, 2006, “
A global Robust Optimization Using Kriging Based Approximation Model
,”
JSME Int. J., Ser. C
1340-8062,
49
(
3
), pp.
779
788
.
16.
Mourelatos
,
Z. P.
, and
Liang
,
J.
, 2006, “
A Methodology for Trading-Off Performance and Robustness Under Uncertainty
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
856
863
.
17.
Chen
,
W.
,
Allen
,
J. K.
,
Schrage
,
D. P.
, and
Mistree
,
F.
, 1997, “
Statistical Experimentation Methods for Achieving Affordable Concurrent Systems Design
,”
AIAA J.
0001-1452,
33
(
5
), pp.
409
435
.
18.
Bishop
,
C. M.
, 1995,
Neural Networks for Pattern Recognition
,
Oxford University Press
,
Oxford
.
19.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
0883-4237,
4
(
4
), pp.
409
435
.
20.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
, 1998, “
Efficient global Optimization of Expensive Black-Box Function
,”
J. Global Optim.
0925-5001,
13
, pp.
455
492
.
21.
Efron
,
B.
, and
Stein
,
C.
, 1981, “
The Jackknife Estimate of Variance
,”
Ann. Stat.
0090-5364,
9
(
3
), pp.
586
596
.
22.
Kohonen
,
T.
, 1995,
Self-Organizing Maps
,
Springer-Verlag
,
Berlin
.
23.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
, 1979, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
0040-1706,
21
(
2
), pp.
239
245
.
24.
Sato
,
K.
,
Kumano
,
T.
,
Yonezawa
,
M.
,
Yamashita
,
H.
,
Jeong
,
S.
, and
Obayashi
,
S.
, 2008, “
Low-Boom and Low-Drag Optimization of the Twin Engine Version of Silent Supersonic Business Jet
,”
J. Fluid Sci. Technol.
1880-5558,
3
(
4
), pp.
576
585
.
25.
Saliby
,
E.
, 1990, “
Descriptive Sampling: A Better Approach to Monte Carlo Simulation
,”
J. Oper. Res. Soc.
0160-5682,
41
(
12
), pp.
1133
1142
.
26.
Fonseca
,
C. M.
, and
Fleming
,
P. J.
, 1993, “
Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization
,”
Proceedings of the Fifth International Conference on Genetic Algorithms
,
Morgan Kaufmann
,
San Mateo, CA
, pp.
416
423
.
27.
Baker
,
J. E.
, 1987, “
Reducing Bias and Inefficiency in the Selection Algorithm
,”
Proceedings of the Second International Conference on Genetic Algorithms
,
Morgan Kaufmann
,
San Mateo, CA
, pp.
41
49
.
28.
Eshelman
,
L. J.
, 1991, “
The CHC Adaptive Search Algorithm: How to Have Safe When Engaging in Nontraditional Genetic Recombination
,”
Foundations of Genetic Algorithms
,
Morgan Kaufmann
,
San Mateo, CA
, pp.
265
283
.
29.
Tsutsui
,
S.
, and
Fujimoto
,
Y.
, 1993, “
Forking Genetic Algorithms With Blocking and Shrinking Modes (FGA)
,”
Proceedings of the Fifth International Conference on Genetic Algorithms
,
Morgan Kaufmann
,
San Mateo, CA
, pp.
206
213
.
You do not currently have access to this content.