Many practical structural designs require that the structure is easily manufactured. Design concepts synthesized using conventional topology optimization methods are typically not easily manufactured, in that multiple finishing processes are required to construct the component. A manufacturing technique that requires only minimal effort is extrusion. Extrusion is a manufacturing process used to create objects of a fixed cross-sectional profile. The result of using this process is lower costs for the manufacture of the final product. In this paper, a hybrid cellular automaton algorithm is developed to synthesize constant cross section structures that are subjected to nonlinear transient loading. The novelty of the proposed method is the ability to generate constant cross section topologies for plastic-dynamic problems since the issue of complex gradients can be avoided. This methodology is applied to extrusions with a curved sweep along the direction of extrusion as well. Three-dimensional examples are presented to demonstrate the efficiency of the proposed methodology in synthesizing these structures. Both static and dynamic loading cases are studied.

1.
Bendsoe
,
M. P.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Optimal Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
, pp.
197
224
.
2.
Kim
,
Y. -Y.
, and
Kim
,
T.
, 2000, “
Topology Optimization of Beam Cross Sections
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
477
493
.
3.
Ishii
,
K.
, and
Aomura
,
S.
, 2004, “
Topology Optimization for the Extruded Three Dimensional Structure With Constant Section
,”
JSME Int. J., Ser. A
1340-8046,
47
(
2
), pp.
198
206
.
4.
Fleury
,
C.
, 1989, “
Conlin: An Efficient Dual Optimizer Based on Convex Approximation Concepts
,”
Struct. Multidiscip. Optim.
1615-147X,
1
(
2
), pp.
81
89
.
5.
Tovar
,
A.
, 2004, “
Bone Remodeling as a Hybrid Cellular Automaton Optimization Process
,” Ph.D. thesis, University of Notre Dame, Notre Dame.
6.
Patel
,
N. M.
, 2007, “
Crashworthiness Design Using Topology Optimization
,” Ph.D. thesis, University of Notre Dame, Notre Dame.
7.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 1989,
Topology Optimization: Theory, Methods and Applications
,
Springer-Verlag
,
Berlin
.
8.
Rozvany
,
G. I. N.
, 1997,
Topology Optimization in Structural Mechanics
,
Springer
,
New York
.
9.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
, 2001, “
Topology Optimization of Continuum Structures: A Review
,”
Appl. Mech. Rev.
0003-6900,
54
, pp.
331
390
.
10.
Haftka
,
R. T.
,
Gürdal
,
Z.
, and
Kamat
,
M. P.
, 1990,
Elements of Structural Optimization
,
2nd ed.
,
Kluwer
,
Dordrecht, the Netherlands
.
11.
Pedersen
,
P.
, 2000, “
On Optimal Shapes in Materials and Structures
,”
Struct. Multidiscip. Optim.
1615-147X,
19
(
3
), pp.
169
182
.
12.
Patnaik
,
S. N.
, and
Hopkins
,
D. A.
, 1998, “
Optimality of Fully Stressed Design
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
165
, pp.
215
221
.
13.
Patel
,
N. M.
,
Kang
,
B. -S.
, and
Renaud
,
J. E.
, 2006, “
Topology Synthesis of Structures Under Impact Loading Using a Hybrid Cellular Automaton Algorithm
,”
Proceedings of the 11th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Portsmouth, VA.
14.
Tovar
,
A.
,
Patel
,
N. M.
,
Niebur
,
G. L.
,
Sen
,
M.
, and
Renaud
,
J. E.
, 2006, “
Topology Optimization Using a hybrid Cellular Automaton Method With Local Control Rules
,”
ASME J. Mech. Des.
0161-8458,
128
(
6
), pp.
1205
1216
.
15.
Bendsoe
,
M. P.
, 1989, “
Optimal Shape Design as a Material Distribution Problem
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
1
, pp.
193
202
.
16.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
, 1991, “
The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
89
, p.
309
336
.
17.
Maute
,
K.
,
Schwartz
,
S.
, and
Ramm
,
E.
, 1998, “
Adaptive Topology Optimization of Elastoplastic Structures
,”
Struct. Optim.
0934-4373,
15
(
2
), pp.
81
91
.
18.
Abdalla
,
M.
, and
Gürdal
,
Z.
, 2002, “
Structural design using optimality based cellular automata
,”
43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Denver, CO, Paper No. AIAA-2002-1676.
19.
Missoum
,
S.
,
Gürdal
,
Z.
, and
Setoodeh
,
S.
, 2005, “
Study of a New Local Update Scheme for Cellular Automata in Structural Design
,”
Struct. Multidiscip. Optim.
1615-147X,
29
(
2
), pp.
103
112
.
20.
Inou
,
N.
,
Shimotai
,
N.
, and
Uesugi
,
T.
, 1994, “
Cellular Automaton Generating Topological Structures
,”
Second European Conference on Smart Structures and Materials
, Glasgow, U.K., pp.
47
50
, Paper No. 2361-08.
21.
Inou
,
N.
,
Uesugi
,
T.
,
Iwasaki
,
A.
, and
Ujihashi
,
S.
, 1998, “
Self-Organization of Mechanical Structure by Cellular Automata
,”
Fracture and Strength of Solids
,
145-149
(
2
), pp.
1115
1120
.
22.
Kita
,
E.
, and
Toyoda
,
T.
, 2000, “
Structural Design Using Cellular Automata
,”
Struct. Multidiscip. Optim.
1615-147X,
19
, pp.
64
73
.
23.
Howell
,
L. L.
, 2000,
Compliant Mechanisms
,
Wiley
,
New York
.
24.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
, 2003, “
An Element Removal and Reintroduction Strategy for the Topology Renaud 18 MD-08-1092 Optimization of Structures and Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
(
10
), pp.
1413
1430
.
25.
Forsberg
,
J.
, and
Nilsson
,
L.
, 2006, “
Topology Optimization in Crashworthiness Design
,”
Struct. Multidiscip. Optim.
1615-147X,
33
, pp.
1
12
.
26.
Holliquist
,
J.
, 1998,
LS-DYNA Theoretical Manual
, Livermore Software Technology Corp.
You do not currently have access to this content.