In this paper, meso- and microscale electrothermally compliant mechanical systems are synthesized for strength, with polysilicon as the structural material. Local temperature and/or stress constraints are imposed in the topology optimization formulation. This is done to keep the optimal solutions thermally intact and also to keep the local stresses below their allowable limit. Constraint relaxation performed on both temperature and stress constraints allows them to be ignored when the cell material densities approach their nonexisting states. As both local constraints are large in number with the number of cells, an active constraint strategy is employed with gradient based optimization. Honeycomb parametrization, which is a staggered arrangement of hexagonal cells, is used to represent the design region. This ensures at least an edge connection between any two adjacent cells, and thus prevents the appearance of both checkerboard and point flexure singularities without any additional computational load. Both SIMP and SIGMOID material assignment functions are explored to obtain the optimal solutions.

1.
Jaecklin
,
V. P.
,
Linder
,
C.
,
de Rooij
,
N. F.
, and
Moret
,
J. M.
, 1992, “
Micromechanical Comb Actuators With Low Driving Voltage
,”
J. Micromech. Microeng.
0960-1317,
2
, pp.
250
255
.
2.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2002, “
A Novel Topology Design Scheme for the Multi-Physics Problems of Electro-Thermally Actuated Compliant Micromechanisms
,”
Sens. Actuators, A
0924-4247,
97–98
, pp.
599
609
.
3.
Chu
,
W. H.
, and
Mehregany
,
M.
, 1994, “
Microfabricated Tweezers With a Large Gripping Force and a Large Range of Motion
,”
Technical Digest, IEEE Solid-State Sensors and Actuator Workshop
, Hilton Head, SC, Jun., pp.
107
110
.
4.
Guckle
,
H.
,
Klein
,
J.
,
Christenson
,
T.
,
Skrobis
,
K.
,
Laudon
,
M.
, and
Lowell
,
E. G.
, 1992, “
Thermomagnetic Metal Flexure Actuators
,”
Technical Digest, Solid-State Sensor and Actuator Workshop
, Hilton Head Island, SC, pp.
73
76
.
5.
Moulton
,
T.
, and
Ananthasuresh
,
G. K.
, 2001, “
Micromechanical Devices With Embedded Electro-Thermal-Compliant Actuation
,”
Sens. Actuators, A
0924-4247,
90
, pp.
38
48
.
6.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2000, “
Effect of Thermal Boundary Conditions and Scale on the Behaviour of Electro-Thermal-Compliant Micromechanisms
,”
Proceedings of Modeling and Simulation of Microsystems MSM2000
, San Diego, CA, pp.
609
612
.
7.
Que
,
L.
,
Park
,
J. S.
, and
Gianchandani
,
Y. B.
, 2001, “
Bent-Beam Electrothermal Actuators-Part I: Single Beam and Cascades Devices
,”
J. Microelectromech. Syst.
1057-7157,
10
(
2
), pp.
247
254
.
8.
Park
,
J. S.
,
Chu
,
L. L.
,
Oliver
,
A. D.
, and
Gianchandani
,
Y. B.
, 2001, “
Bent-Beam Electrothermal Actuators-Part II: Linear and Rotary Microengines
,”
J. Microelectromech. Syst.
1057-7157,
10
(
2
), pp.
255
262
.
9.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2001, “
Comprehensive Thermal Modeling and Characterization of an Electro-Thermal-Compliant Microactuator
,”
J. Micromech. Microeng.
0960-1317,
11
, pp.
452
462
.
10.
Krishnan
,
G.
, and
Ananthasuresh
,
G. K.
, 2008, “
Evaluation and Design of Displacement-Amplifying Compliant Mechanisms for Sensor Applications
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
102304
.
11.
Lu
,
K. -J.
, and
Kota
,
S.
, 2006, “
Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
1080
1091
.
12.
1992,
Topology Designs of Structures
,
Bendsøe
,
M. P.
, and
Mota Soares
,
C. M.
, eds.,
Kluwer
,
Dordrecht, The Netherlands
.
13.
Diaz
,
A. R.
, and
Sigmund
,
O.
, 1995, “
Checkerboard Patterns in Layout Optimization
,”
Struct. Optim.
0934-4373,
10
, pp.
40
45
.
14.
Mankame
,
N.
, and
Saxena
,
A.
, 2007, “
Analysis of the Hex-Cell Parameterization for Topology Synthesis of Compliant Mechanisms
,” ASME Paper No. DETC2007-35244.
15.
Sigmund
,
O.
, 1994, “
Design of Material Structures Using Topology Optimization
,” Ph.D. thesis, Department of Solid Mechanics, DTU, Denmark.
16.
Jog
,
C. S.
,
Haber
,
R. B.
, and
Bendsøe
,
M. P.
, 1994, “
Topology Design With Optimized Self-Adaptive Materials
,”
Int. J. Numer. Methods Eng.
0029-5981,
37
, pp.
1323
1350
.
17.
Jog
,
C. S.
, and
Haber
,
R. B.
, 1996, “
Stability of Finite Element Models for Distributed Parameter Optimization and Topology Design
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
130
, pp.
203
226
.
18.
Sigmund
,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
,
25
(
10
), pp.
495
526
. 0045-7825
19.
Petersson
,
J.
, and
Sigmund
,
O.
, 1998, “
Slope Constrained Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
41
, pp.
1417
1434
.
20.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2003, “
A Novel Formulation for the Design of Distributed Compliant Mechanisms
,”
Mech. Based Des. Struct. Mach.
1539-7734,
31
(
2
), pp.
151
179
.
21.
Poulsen
,
T. A.
, 2003, “
A New Scheme for Imposing Minimum Length Scale in Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
, pp.
741
760
.
22.
Guest
,
J. K.
,
Prévost
,
J. H.
, and
Belytschko
,
T.
, 2004, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
238
254
.
23.
Bleicher
,
M. N.
, and
Toth
,
L. F.
, 1965, “
Two-Dimensional Honeycombs
,”
Am. Math. Monthly
,
72
(
9
), pp.
969
973
. 0002-9890
24.
Tóth
,
L. F.
, 1964, “
What the Bees Know and What They Do Not Know
,”
Bull. Am. Math. Soc.
0002-9904,
70
(
4
), pp.
468
481
.
25.
Hales
,
T. C.
, 2001, “
The Honeycomb Conjecture
,”
Discrete Comput. Geom.
0179-5376,
25
, pp.
1
22
.
26.
Saxena
,
R.
, and
Saxena
,
A.
, 2007, “
On Honeycomb Representation and SIGMOID Material Assignment in Optimal Topology Synthesis of Compliant Mechanisms
,”
Finite Elem. Anal. Des.
,
43
(
14
), pp.
1082
1098
. 0168-874X
27.
Saxena
,
A.
, 2008, “
A Material-Mask Overlay Strategy for Continuum Topology Optimization of Compliant Mechanisms Using Honeycomb Discretization
,”
ASME J. Mech. Des.
1050-0472,
130
(
8
), p.
082304
.
28.
Chang
,
S. Y.
, and
Youn
,
S. K.
, 2006, “
Material Cloud Method—Its Mathematical Investigation and Numerical Application for 3D Engineering Design
,”
Int. J. Solids Struct.
0020-7683,
43
(
17
), pp.
5337
5354
.
29.
Sethian
,
J. A.
, and
Wiegmann
,
A.
, 2000, “
Structural Boundary Via Level Set and Immersed Interface Methods
,”
J. Comput. Phys.
0021-9991,
163
(
2
), pp.
489
528
.
30.
Cheng
,
G. D.
, and
Guo
,
X.
, 1997, “
ε-Relaxation Approach in Structural Optimization
,”
Struct. Optim.
0934-4373,
13
, pp.
258
266
.
31.
Duysinx
,
P.
, and
Bendsøe
,
M. P.
, 1998, “
Topology Optimization of Continuum Structures With Local Stress Constraints
,”
Int. J. Numer. Methods Eng.
0029-5981,
43
, pp.
1453
1478
.
32.
Sharpe
,
W. N.
, Jr.
,
Yuan
,
B.
,
Vaidyanathn
,
R.
, and
Edwards
,
R. L.
, 1997, “
Measurement of Young’s Modulus, Poisson’s Ratio and Tensile Strength of Polysilicon
,”
Tenth IEEE International Workshop on Microelectromechanical Systems
, Nagoya, Japan, pp.
424
429
.
33.
Svanberg
,
K.
, 2002, “
A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations
,”
SIAM J. Optim.
1052-6234,
12
(
2
), pp.
555
573
.
You do not currently have access to this content.